1,181 research outputs found

    Evolution of Mid-gap States and Residual 3-Dimensionality in La2−x_{2-x}Srx_xCuO4_4

    Full text link
    We have carried out extensive first principles doping-dependent computations of angle-resolved photoemission (ARPES) intensities in La2−x_{2-x}Srx_xCuO4_4 (LSCO) over a wide range of binding energies. Intercell hopping and the associated 3-dimensionality, which is usually neglected in discussing cuprate physics, is shown to play a key role in shaping the ARPES spectra. Despite the obvious importance of strong coupling effects (e.g. the presence of a lower Hubbard band coexisting with mid-gap states in the doped insulator), we show that a number of salient features of the experimental ARPES spectra are captured to a surprisingly large extent when effects of kzk_z-dispersion are properly included in the analysis.Comment: 5 pages, 4 figure

    Matrix Element and Strong Electron Correlation Effects in ARPES from Cuprates

    Full text link
    We discuss selected results from our recent work concerning the ARPES (angle-resolved photoemission) spectra from the cuprates. Our focus is on developing an understanding of the effects of the ARPES matrix element and those of strong electron correlations in analyzing photointensities. With simulations on Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212), we show that the ARPES matrix element possesses remarkable selectivity properties, such that by tuning the photon energy and polarization, emission from the bonding or the antibonding states can be enhanced. Moreover, at low photon energies (below 25 eV), the Fermi surface (FS) emission is dominated by transitions from just the O-atoms in the CuO2_2 planes. In connection with strong correlation effects, we consider the evolution with doping of the FS of Nd2−x_{2-x}Cex_xCuO4±δ_{4\pm\delta} (NCCO) in terms of the tt-t′t'-UU Hubbard model Hamiltonian. We thus delineate how the FS evolves on electron doping from the insulating state in NCCO. The Mott pseudogap is found to collapse around optimal doping suggesting the existence of an associated quantum critical point.Comment: 5 pages, 4 figures, accepted to be published in Journal of Physics and Chemistry of Solid

    Beam Dynamics Studies for the HIE-ISOLDE Linac at CERN

    Full text link
    The upgrade of the normal conducting (NC) Radioactive Ion Beam EXperiment (REX)-ISOLDE heavy ion accelerator at CERN, under the High Intensity and Energy (HIE)-ISOLDE framework, proposes the use of superconducting (SC) quarter-wave resonators (QWRs) to increase the energy capability of the facility from 3 MeV/u to beyond 10 MeV/u. A beam dynamics study of a lattice design comprising SC QWRs and SC solenoids has confirmed the design's ability to accelerate ions, with a mass-to-charge ratio in the range 2.5 < A/q < 4.5, to the target energy with a minimal emittance increase. We report on the development of this study to include the implementation of realistic fields within the QWRs and solenoids. A preliminary error study is presented in order to constrain tolerances on the manufacturing and alignment of the linac.Comment: 3 pages, 8 figures, 1 table, submitted to the Particle Accelerator Conference (PAC) 2009 in Vancouver. Page formatting changed to US letter siz

    Mismatch between the PSB and CPS due to the present vertical recombination scheme

    Get PDF
    The production of the nominal LHC beam will deamand optimum emittance preservation between individual machines in the injection chain. The edge effects at the entry and exit of the bending magnets used for the vertical recombination of the four PS booster rings to the level of the CPS results in a small uncompensated, and for each ring different, mismatch. We present recent measurements of the mismatch done in the PSB measurement line

    Physics opportunities with future proton accelerators at CERN

    Get PDF
    We analyze the physics opportunities that would be made possible by upgrades of CERN's proton accelerator complex. These include the new physics possible with luminosity or energy upgrades of the LHC, options for a possible future neutrino complex at CERN, and opportunities in other physics including rare kaon decays, other fixed-target experiments, nuclear physics and antiproton physics, among other possibilities. We stress the importance of inputs from initial LHC running and planned neutrino experiments, and summarize the principal detector R&D issues.Comment: 39 page, word document, full resolution version available from http://cern.ch/pofpa/POFPA-arXive.pd

    "Intelligent" Automatic Beam Steering and Shaping

    Get PDF
    The strategy for Automated Beam Steering and Shaping (ABS) in the PS complex is to use theoretical response matrices calculated from an optics database. The main reason for this is that it enforces a certain understanding of the machine optics. A drawback is that the validation of such a matrix can be a lengthy process. However, every time a correction is made using an ABS program, a partial measurement of the response matrix is effectively performed. Since the ABS programs are very frequently used, the full matrices could thus be measured on an almost daily basis, provided this information is retained. The information can be used in two ways. Either the program passively logs the data to be analysed off­line, or the information is directly fed back to the matrix, which makes the program 'learn' as it executes. The data logging provides a powerful machine debugging tool, since deviations between the measured and theoretical matrices can be traced back to incorrect optical parameters. The 'learning' mode ensures that the correction will always converge. Implementation details and simulation results are discussed
    • …
    corecore