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Abstract

The strategy for Automated Beam Steering and Shaping (ABS) in the PS complex
is to use theoretical response matrices calculated from an optics database. The main
reason for this is that it enforces a certain understanding of the machine optics. A
drawback is that the validation of such a matrix can be a lengthy process. However,
every time a correction is made using an ABS program, a partial measurement
of the response matrix is effectively performed. Since the ABS programs are very
frequently used, the full matrices could thus be measured on an almost daily basis,
provided this information is retained. The information can be used in two ways.
Either the program passively logs the data to be analysed off-line, or the information
is directly fed back to the matrix, which makes the program ’learn’ as it executes.
The data logging provides a powerful machine debugging tool, since deviations
between the measured and theoretical matrices can be traced back to incorrect
optical parameters. The ’learning’ mode ensures that the correction will always
converge. Implementation details and simulation results are discussed.
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1 INTRODUCTION
Due to the complexity of large accelerators, computer support is needed for efficient

operation. In the PS complex, software is developed for this purpose within the context
of Automated Beam Steering and Shaping[1] (ABS).

The approach taken is that every relation between machine parameters and mea-
sured quantities can, if sufficiently small corrections are considered, be treated within the
framework of linear perturbation theory. The first order relation between changes in the
parameters ci and changes in the measured quantities mi are given by the response matrix
A (also called the correction matrix), defined as

A · c = m. (1)

This response matrix is in general a function of the parameters. If this matrix is known,
optimal corrections can be calculated from the errors in the measured quantities. Rather
than inverting the matrix, which can be numerically unstable, a special correction algo-
rithm called Micado[2] is used to calculate c from the measured errors m. This algorithm
solves the matrix equation approximately, using only a few of the most effective correctors
available.

The matrix can be obtained in two ways: either by direct measurement, or as a
linearization of a theoretical machine model. In the PS complex, the second method has
been chosen, since the creation and maintenance of an accurate theoretical model enforces
a thorough understanding of the machines. However, the way to verify that the theoretical
model correctly describes the machine is usually to measure the response matrix and
compare it to the theoretical one. This can be a long and cumbersome process.

2 LEARNING CORRECTION SYSTEMS
2.1 ’Passive learning’ - Data Collection

When the ABS programs are used, measurements and subsequent corrections are
iterated until the optimum is found. In the process, a lot of measurement data passes
through the program. Presently, this data is lost once it has been used to calculate a
correction. This is a waste of valuable information. If the information was retained, enough
measured data could be collected in a typical ABS program session to reconstruct the
entire response matrix. This can be implemented by a simple log file. Since the program
collects information about the machine, but does not use it, this could be called a ’passive
learning’ mode.

2.2 ’Active learning’ - Direct Feedback
In the current implementation, the ABS programs are static. Given a certain error,

they will always propose the same correction. This is not a problem as long the iterative
correction converge, but this may not always be the case, for example in closed orbit
corrections if the tune of the machine is different from the model tune.

The obvious next step from the passive data collection is to enable the program to
analyse the data online and modify the response matrix accordingly, if it should be found
to be incorrect.

A program in ’active learning’ mode should identify and retain useful information
and use it to reconstruct as much as possible of the response matrix. The reconstructed
parts should then be substituted into the current response matrix. A calculated matrix
could be used in the beginning of an ABS program session, but it would be gradually
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Figure 1: Schematic structure of the ABS application programs. The dashed line show
where modifications are needed. Since the modifications are almost fully localised to the
Mathematica part, they could be implemented easily.

transformed into an up-to-date measured matrix. At the end of the session, the two ma-
trices could be compared in order to identify differences between the model and the real
machine. Thus, the learning approach is not contrary to the underlying idea of using theo-
retical matrices, but rather provides a simple and powerful tool to verify their correctness.

3 PRACTICAL IMPLEMENTATION
The ABS programs have several components[3] (see Fig. 1). The application pro-

gram is configured from a database[4], that also contains the theoretical model of the
machine. The actual computation of corrections, based on the measured data and the
database model, is made in a Mathematica kernel running as a sub-process to the ap-
plication program. This modular structure makes it very easy to implement the ideas
presented above, since in principle only the Mathematica code needs to be modified. Data
logging can be enabled simply by dumping all measured data to a flat file for further
analysis.

The code for the analysis of the logged data have been written in Mathematica and
could therefore be incorporated easily in the correction module in order to make it analyse
the data on-line. The data from several corrections can be summarised as

A · C = M (2)

where each column of the matrices C and M corresponds to one applied correction. The
crucial difference from (1) is that now the matrix A is the unknown. While the equation is
often under-determined because certain correctors have not been changed, there is often
a sub-system which is solvable.

The analysis module performs the analysis of this data in several steps. It first
suppresses data that are too noisy. That is, corrections where the changes made are either
zero or too small to give an effect above the noise level. This is important for the stability
of the solution.

In the second stage it, analyses the remaining data to see which parts of the response
matrix that can be reconstructed. This is done by studying the properties of the matrix
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C. First, the matrix is reduced by removing linearly dependent columns. Then, by per-
mutating rows and columns, the program identifies the largest possible square sub-matrix
C1, such that

C̃ =

(
C1 C2

0 C3

)
. (3)

The corresponding permutated matrix equation

(
A1 A2

) · ( C1 C2

0 C3

)
=

(
M1 M2

)
(4)

can then be solved for

A1 · C1 = M1 (5)

since the columns of the reduced matrix are linearly independent and thus the inverse
exists.

Having identified the solvable correctors, the program goes back to the full data set,
and selects all measurements where only these correctors have been used. The resulting
matrix equation is similar to (5), but in general over-determined, and can be solved using
a least squares fit.

Finally, the calculated columns are substituted into the previous response matrix.

4 TESTS
The performance of the learning algorithm, as compared to the standard ABS algo-

rithm based on a static matrix, has been evaluated using simulations. In each simulation,
initial errors in both the matrix and the corrector settings were randomly generated, and
the performance of the two algorithms studied as a function of the number of iterative cor-
rections made. Measurement noise was also included. Two examples of such simulations
are shown in Figs. 2 and 3. It was found that the ’learning’ algorithm always converged
eventually, whereas with a static matrix it often diverged.

It was noted, however, that if the initial matrix error is very large, the residual
error can initially grow significantly before the learning algorithm starts to converge. In
a real machine this could lead to beam loss, and is thus not acceptable. This problem,
appears mainly when corrections are made using many correctors. In such a situation, the
operator would cancel the correction and make a new attempt with fewer correctors.

Another experience from the simulations is that the average number of iterative
corrections needed to reconstruct the full matrix is not much greater than the theoretical
minimum (which is given by the number of columns in the matrix). Since the corrections
converge very rapidly once the correct matrix is obtained, this gives an estimate of the
maximum number of corrections needed for convergence.

5 EXTRACTING THE OPTICS INFORMATION
Just as the response matrix can be calculated from optical parameters, the optical

parameters can under certain circumstances be deduced from the matrix. For example,
the matrix elements for beam steering in a transfer line are given by

∆xi =

{√
βiβj sin(µi − µj) if µi > µj,

0 if µi < µj.
(6)

3



0 2 4 6 8 10 12 14 16 18 20
Iteration

50

100

150

200

P
e

rc
e

n
t

Figure 2: Simulation results for a system of 10 correctors and 10 monitors. The solid line
shows the residual error in percent as a function of number of corrections performed,
when using the ’learning’ algorithm. The dashed line shows the same curve using a static
matrix. The bar chart indicates how many percent of the matrix entries that have been
updated. In this case the initial matrix had large errors. After an initial excursion, the
learning algorithm converges, whereas the static matrix version does not.

For such a response matrix of n correctors and m monitors, the matrix has n ·m entries,
where roughly half are zero in case monitors and correctors are evenly distributed along
the line. The matrix can be parametrised in terms of the value of the beta function at
n + m locations, as well as n + m − 1 positions in betatron phase (the phase of the first
element can be arbitrarily chosen).

Since the two numbers scale very differently, when the matrices are sufficiently large,
the resulting system of equations is over-determined and thus the optical parameters can
be determined.

Therefore, if the measured matrices resulting from each ABS session are logged,
effectively a history of the machine optics is obtained. This could be useful for example
to study the long term stability of the machine.

6 CONCLUSIONS
By making ABS programs learn from previous corrections, a faster and more secure

convergence can be obtained.
An implementation of such a learning system have been made in Mathematica, as

an extension to the current ABS Mathematica package. and tested by simulations with
very good results.

By logging the information collected by the program, statistics on the machine
optics, and its stability in time, is automatically obtained.
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Figure 3: Simulation performed and presented as in Fig. 2. In this case, the initial matrix
errors were small. Both algorithms converges, but in the process the learning algorithm
measures the matrix, which can then be compared to the calculated one.
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