48 research outputs found

    Compliance to HIV treatment monitoring guidelines can reduce laboratory costs

    Get PDF
    Background: Panel tests are a predetermined group of tests commonly requested together to provide a comprehensive and conclusive diagnosis, for example, liver function test (LFT). South African HIV antiretroviral treatment (ART) guidelines recommend individual tests for toxicity monitoring over panel tests. In 2008, the National Health Laboratory Services (NHLS) request form was redesigned to list individual tests instead of panel tests and removed the ‘other tests’ box option to facilitate efficient ART laboratory monitoring.Objectives: This study aimed to demonstrate changes in laboratory expenditure, for individual and panel tests, for ART toxicity monitoring.Method: NHLS Corporate Data Warehouse (CDW) data were extracted for HIV conditional grant accounts to assess ART toxicity monitoring laboratory expenditure between 2010/2011 and 2014/2015. Data were classified based on the tests requested, as either panel (LFT or urea and electrolytes) or individual (alanine transaminase or creatinine) tests.Results: Expenditure on panel tests reduced from R340 million in 2010/2011 to R140m by 2014/2015 (reduction of R204m) and individual test expenditure increased from R34m to R76m (twofold increase). A significant reduction in LFT panel expenditure was noted, reducing from R322m in 2010/2011 to R130m in 2014/2015 (60% reduction).Conclusion: Changes in toxicity monitoring guidelines and the re-engineering of the NHLS request form successfully reduced expenditure on panel tests relative to individual tests. The introduction of order entry systems could further reduce unnecessary laboratory expenditure

    Programmatic implications of implementing the relational algebraic capacitated location (RACL) algorithm outcomes on the allocation of laboratory sites, test volumes, platform distribution and space requirements

    Get PDF
    Introduction: CD4 testing in South Africa is based on an integrated tiered service delivery model that matches testing demand with capacity. The National Health Laboratory Service has predominantly implemented laboratory-based CD4 testing. Coverage gaps, over-/under-capacitation and optimal placement of point-of-care (POC) testing sites need investigation. Objectives: We assessed the impact of relational algebraic capacitated location (RACL) algorithm outcomes on the allocation of laboratory and POC testing sites. Methods: The RACL algorithm was developed to allocate laboratories and POC sites to ensure coverage using a set coverage approach for a defined travel time (T). The algorithm was repeated for three scenarios (A: T = 4; B: T = 3; C: T = 2 hours). Drive times for a representative sample of health facility clusters were used to approximate T. Outcomes included allocation of testing sites, Euclidian distances and test volumes. Additional analysis included platform distribution and space requirement assessment. Scenarios were reported as fusion table maps. Results: Scenario A would offer a fully-centralised approach with 15 CD4 laboratories without any POC testing. A significant increase in volumes would result in a four-fold increase at busier laboratories. CD4 laboratories would increase to 41 in scenario B and 61 in scenario C. POC testing would be offered at two sites in scenario B and 20 sites in scenario C. Conclusion: The RACL algorithm provides an objective methodology to address coverage gaps through the allocation of CD4 laboratories and POC sites for a given T. The algorithm outcomes need to be assessed in the context of local conditions

    District and sub-district analysis of cryptococcal antigenaemia prevalence and specimen positivity in KwaZulu-Natal, South Africa

    Get PDF
    Background: Cryptococcal meningitis (CM) is a leading cause of mortality among HIV-positive South Africans. Reflex cryptococcal antigen (CrAg) testing of remnant plasma was offered as a pilot prior to implementation in October 2016 in KwaZulu-Natal province. The national reflex CrAg positivity was 5.4% compared to 7.3% for KwaZulu-Natal. Objectives: The aim of this study was to interrogate CrAg positivity by health levels to identify hotspots. Method: Data for the period October 2016 to June 2017 were analysed. Health district CrAg positivity and prevalence were calculated, with the latter using de-duplicated patient data. The district CrAg positivity and the number of CrAg-positive specimens per health facility were mapped using ArcGIS. For districts with the highest CrAg positivity, a sub-district CrAg positivity analysis was conducted. Results: The provincial CrAg positivity was 7.6%. District CrAg positivity ranged from 5.7% (Ugu) to 9.6% (Umkhanyakude) with prevalence ranging from 5.5% (Ugu) to 9.7% (Umkhanyakude). The highest CrAg positivity was reported for the Umkhanyakude (9.6%) and King Cetswayo (9.5%) districts. In these two districts, CrAg positivity of 10% was noted in the Umhlabuyalingana (10.0%), Jozini (10.2%), uMhlathuze (10.5%) and Nkandla (10.8%) subdistricts. In these subdistricts, 135 CrAg-positive samples were reported for the Ngwelezane hospital followed by 41 and 43 at the Hlabisa and Manguzi hospitals respectively. Conclusion: Cryptococcal antigen positivity was not uniformly distributed at either the district or sub-district levels, with identified facility hotspots in the Umkhanyakude and King Cetswayo districts. This study demonstrates the value of laboratory data to identify hotspots for planning programmatic interventions

    Siting of HIV/AIDS diagnostic equipment in South Africa: a case study in locational analysis

    No full text
    This paper describes a practical application of locational analysis to the siting of HIV/AIDS diagnostic equipment in laboratories across South Africa. Classical location analytical techniques were extended to ensure that laboratories are sited as close as possible to major centres of demand from hospitals and clinics. A particular advantage of the modified set covering algorithm developed is that choices between laboratory sites are made in a transparent manner. In order to find appropriate numbers and ideal placement of CD4 laboratories, runs were undertaken for various scenarios based on maximum travel time from health facilities to laboratory sites. Results demonstrated to decision makers showed close comparisons with pilot review projects undertaken in four health districts of South Africa. The research has potential to impact health care delivery to HIV sufferers in the poorest rural regions of the country

    Performance evaluation of the Pimaâ„¢ point-of-care CD4 analyser using capillary blood sampling in field tests in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Point-of-care CD4 testing can provide immediate CD4 reporting at HIV-testing sites. This study evaluated performance of capillary blood sampling using the point-of-care Pima™ CD4 device in representative primary health care clinics doing HIV testing.</p> <p>Methods</p> <p>Prior to testing, prescribed capillary-sampling and instrument training was undertaken by suppliers across all sites. Matching venous EDTA samples were drawn throughout for comparison to laboratory predicate methodology (PLG/CD4). In Phase I, Pima™ cartridges were pipette-filled with EDTA venous blood in the laboratory (N = 100). In Phase II (N = 77), Pima™ CD4 with capillary sampling was performed by a single operator in a hospital-based antenatal clinic. During subsequent field testing, Pima™ CD4 with capillary sampling was performed in primary health care clinics on HIV-positive patients by multiple attending nursing personnel in a rural clinic (Phase-IIIA, N = 96) and an inner-city clinic (Phase-IIIB, N = 139).</p> <p>Results</p> <p>Pima™ CD4 compared favourably to predicate/CD4 when cartridges were pipette-filled with venous blood (bias -17.3 ± STDev = 36.7 cells/mm<sup>3</sup>; precision-to-predicate %CV < 6%). Decreased precision of Pima™ CD4 to predicate/CD4 (varying from 17.6 to 28.8%SIM CV; mean bias = 37.9 ± STDev = 179.5 cells/mm<sup>3</sup>) was noted during field testing in the hospital antenatal clinic. In the rural clinic field-studies, unacceptable precision-to-predicate and positive bias was noted (mean 28.4%SIM CV; mean bias = +105.7 ± STDev = 225.4 cells/mm<sup>3</sup>). With additional proactive manufacturer support, reliable performance was noted in the subsequent inner-city clinic field study where acceptable precision-to-predicate (11%SIM CV) and less bias of Pima™ to predicate was shown (BA bias ~11 ± STDev = 69 cells/mm<sup>3</sup>).</p> <p>Conclusions</p> <p>Variable precision of Pima™ to predicate CD4 across study sites was attributable to variable capillary sampling. Poor precision was noted in the outlying primary health care clinic where the system is most likely to be used. Stringent attention to capillary blood collection technique is therefore imperative if technologies like Pima™ are used with capillary sampling at the POC. Pima™ CD4 analysis with venous blood was shown to be reproducible, but testing at the point of care exposes operators to biohazard risk related to uncapping vacutainer samples and pipetting of blood, and is best placed in smaller laboratories using established principles of Good Clinical Laboratory Practice. The development of capillary sampling quality control methods that assure reliable CD4 counts at the point of care are awaited.</p

    An integrated tiered service delivery model (ITSDM) based on local CD4 testing demands can improve turn-around times and save costs whilst ensuring accessible and scalable CD4 services across a national programme.

    No full text
    The South African National Health Laboratory Service (NHLS) responded to HIV treatment initiatives with two-tiered CD4 laboratory services in 2004. Increasing programmatic burden, as more patients access anti-retroviral therapy (ART), has demanded extending CD4 services to meet increasing clinical needs. The aim of this study was to review existing services and develop a service-model that integrated laboratory-based and point-of-care testing (POCT), to extend national coverage, improve local turn-around/(TAT) and contain programmatic costs.NHLS Corporate Data Warehouse CD4 data, from 60-70 laboratories and 4756 referring health facilities was reviewed for referral laboratory workload, respective referring facility volumes and related TAT, from 2009-2012.An integrated tiered service delivery model (ITSDM) is proposed. Tier-1/POCT delivers CD4 testing at single health-clinics providing ART in hard-to-reach areas (<5 samples/day). Laboratory-based testing is extended with Tier-2/POC-Hubs (processing ≤ 30-40 CD4 samples/day), consolidating POCT across 8-10 health-clinics with other HIV-related testing and Tier-3/'community' laboratories, serving ≤ 40 health-clinics, processing ≤ 150 samples/day. Existing Tier-4/'regional' laboratories serve ≤ 100 facilities and process <350 samples/day; Tier-5 are high-volume 'metro'/centralized laboratories (>350-1500 tests/day, serving ≥ 200 health-clinics). Tier-6 provides national support for standardisation, harmonization and quality across the organization.The ITSDM offers improved local TAT by extending CD4 services into rural/remote areas with new Tier-3 or Tier-2/POC-Hub services installed in existing community laboratories, most with developed infrastructure. The advantage of lower laboratory CD4 costs and use of existing infrastructure enables subsidization of delivery of more expensive POC services, into hard-to-reach districts without reasonable access to a local CD4 laboratory. Full ITSDM implementation across 5 service tiers (as opposed to widespread implementation of POC testing to extend service) can facilitate sustainable 'full service coverage' across South Africa, and save>than R125 million in HIV/AIDS programmatic costs. ITSDM hierarchical parental-support also assures laboratory/POC management, equipment maintenance, quality control and on-going training between tiers

    Estimating implementation and operational costs of an integrated tiered CD4 service including laboratory and point of care testing in a remote health district in South Africa.

    No full text
    An integrated tiered service delivery model (ITSDM) has been proposed to provide 'full-coverage' of CD4 services throughout South Africa. Five tiers are described, defined by testing volumes and number of referring health-facilities. These include: (1) Tier-1/decentralized point-of-care service (POC) in a single site; Tier-2/POC-hub servicing processing < 30-40 samples from 8-10 health-clinics; Tier-3/Community laboratories servicing ∼ 50 health-clinics, processing < 150 samples/day; high-volume centralized laboratories (Tier-4 and Tier-5) processing < 300 or > 600 samples/day and serving > 100 or > 200 health-clinics, respectively. The objective of this study was to establish costs of existing and ITSDM-tiers 1, 2 and 3 in a remote, under-serviced district in South Africa.Historical health-facility workload volumes from the Pixley-ka-Seme district, and the total volumes of CD4 tests performed by the adjacent district referral CD4 laboratories, linked to locations of all referring clinics and related laboratory-to-result turn-around time (LTR-TAT) data, were extracted from the NHLS Corporate-Data-Warehouse for the period April-2012 to March-2013. Tiers were costed separately (as a cost-per-result) including equipment, staffing, reagents and test consumable costs. A one-way sensitivity analyses provided for changes in reagent price, test volumes and personnel time.The lowest cost-per-result was noted for the existing laboratory-based Tiers- 4 and 5 (6.24and6.24 and 5.37 respectively), but with related increased LTR-TAT of > 24-48 hours. Full service coverage with TAT < 6-hours could be achieved with placement of twenty-seven Tier-1/POC or eight Tier-2/POC-hubs, at a cost-per-result of 32.32and32.32 and 15.88 respectively. A single district Tier-3 laboratory also ensured 'full service coverage' and < 24 hour LTR-TAT for the district at 7.42per−test.ImplementingasingleTier−3/communitylaboratorytoextendandimprovedeliveryofservicesinPixley−ka−Seme,withanestimatedlocal∼12−24−hourLTR−TAT,is∼7.42 per-test.Implementing a single Tier-3/community laboratory to extend and improve delivery of services in Pixley-ka-Seme, with an estimated local ∼ 12-24-hour LTR-TAT, is ∼ 2 more than existing referred services per-test, but 2-4 fold cheaper than implementing eight Tier-2/POC-hubs or providing twenty-seven Tier-1/POCT CD4 services

    Compliance to HIV treatment monitoring guidelines can reduce laboratory costs

    Full text link
    Lahondès Jules de. L'hôtel d'Assézat à Toulouse. In: Bulletin Monumental, tome 60, année 1895. pp. 369-397

    Relationship between CD4 tiers and NDOH Health Care Facilities.

    No full text
    <p>Table showing the integration of the category of Health Care Facility (NDOH ‘Classification of Health Care Facility’ <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0114727#pone.0114727-National8" target="_blank">[20]</a> offering ART) in relation to the proposed tier of CD4 service testing centre required to match and accommodate referred numbers of CD4 tests.</p><p>*testing facility framework and proportion offering ART; <b><sup>§</sup></b>sample testing capacity per day.</p><p>Relationship between CD4 tiers and NDOH Health Care Facilities.</p

    Current CD4 service coverage precincts.

    No full text
    <p>Map to reveal current estimated service precincts based on an averaged 100 km Euclidian radius. Areas without drawn service precincts largely coincide with districts with poorer LTR-TAT (see insert <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0114727#pone-0114727-g002" target="_blank">Fig. 2</a>). Note many health care facilities that fall outside of service precincts that would benefit from implementation of additional Tier-1, 2 and 3 services. Red circles highlight relatively over-subscribed areas with multiple ‘centralised’/metro laboratories in densely populated areas. In such metropolitan areas with high testing demands, amalgamation of services and the formation of a ‘super-laboratory’ could create critical mass, consolidate on technical skills and quality control provided that transport and IT logistics are absolutely optimized.</p
    corecore