755 research outputs found

    Coherent Neutral Current Neutrino-Nucleus Scattering at a Spallation Source; a Valuable Experimental Probe

    Full text link
    The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current is examined considering the Spallation Neutron Source (SNS) as a source of neutrinos. SNS is a prolific pulsed source of electron and muon neutrinos as well as muon antineutrinos.Comment: 15 LaTex pages, 14 figures, 3 Table

    Suppression of Landau damping via electron band gap

    Full text link
    The pondermotive potential in the X-ray Raman compression can generate an electron band gap which suppresses the Landau damping. The regime is identified where a Langmuir wave can be driven without damping in the stimulated Raman compression. It is shown that the partial wave breaking and the frequency detuning due to the trapped particles would be greatly reduced.Comment: 4 pages, 5 figure

    MIMAC-He3 : A Micro-TPC Matrix of Chambers of He3 for direct detection of Wimps

    Full text link
    The project of a micro-TPC matrix of chambers of \hetrois for direct detection of non-baryonic dark matter is presented. The privileged properties of He3 are highlighted. The double detection (ionization - projection of tracks) is explained and its rejection evaluated. The potentialities of MIMAC-He3 for supersymmetric dark matter search are discussed.Comment: to appear in Proc. of the 9th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Sept. 200

    Measurement of the quenching factor of Na recoils in NaI(Tl)

    Full text link
    Measurements of the quenching factor for sodium recoils in a 5 cm diameter NaI(Tl) crystal at room temperature have been made at a dedicated neutron facility at the University of Sheffield. The crystal has been exposed to 2.45 MeV mono-energetic neutrons generated by a Sodern GENIE 16 neutron generator, yielding nuclear recoils of energies between 10 and 100 keVnr. A cylindrical BC501A detector has been used to tag neutrons that scatter off sodium nuclei in the crystal. Cuts on pulse shape and time of flight have been performed on pulses recorded by an Acqiris DC265 digitiser with a 2 ns sampling time. Measured quenching factors of Na nuclei range from 19% to 26% in good agreement with other experiments, and a value of 25.2 \pm 6.4% has been determined for 10 keV sodium recoils. From pulse shape analysis, the mean times of pulses from electron and nuclear recoils have been compared down to 2 keVee. The experimental results are compared to those predicted by Lindhard theory, simulated by the SRIM Monte Carlo code, and a preliminary curve calculated by Prof. Akira Hitachi.Comment: 21 pages, 13 figure

    Electron-Acoustic Phonon Energy Loss Rate in Multi-Component Electron Systems with Symmetric and Asymmetric Coupling Constants

    Full text link
    We consider electron-phonon (\textit{e-ph}) energy loss rate in 3D and 2D multi-component electron systems in semiconductors. We allow general asymmetry in the \textit{e-ph} coupling constants (matrix elements), i.e., we allow that the coupling depends on the electron sub-system index. We derive a multi-component \textit{e-ph}power loss formula, which takes into account the asymmetric coupling and links the total \textit{e-ph} energy loss rate to the density response matrix of the total electron system. We write the density response matrix within mean field approximation, which leads to coexistence of\ symmetric energy loss rate FS(T)F_{S}(T) and asymmetric energy loss rate FA(T)F_{A}(T) with total energy loss rate F(T)=FS(T)+FA(T) F(T)=F_{S}(T)+F_{A}(T) at temperature TT. The symmetric component F_{S}(T) isequivalenttotheconventionalsinglesubsystemenergylossrateintheliterature,andintheBlochGru¨neisenlimitwereproduceasetofwellknownpowerlaws is equivalent to the conventional single-sub-system energy loss rate in the literature, and in the Bloch-Gr\"{u}neisen limit we reproduce a set of well-known power laws F_{S}(T)\propto T^{n_{S}},wheretheprefactorandpower, where the prefactor and power n_{S}dependonelectronsystemdimensionalityandelectronmeanfreepath.For depend on electron system dimensionality and electron mean free path. For F_{A}(T)weproduceanewsetofpowerlawsFA(T)TnA we produce a new set of power laws F_{A}(T)\propto T^{n_{A}}. Screening strongly reduces the symmetric coupling, but the asymmetric coupling is unscreened, provided that the inter-sub-system Coulomb interactions are strong. The lack of screening enhances FA(T)F_{A}(T) and the total energy loss rate F(T)F(T). Especially, in the strong screening limit we find FA(T)FS(T)F_{A}(T)\gg F_{S}(T). A canonical example of strongly asymmetric \textit{e-ph} matrix elements is the deformation potential coupling in many-valley semiconductors.Comment: v2: Typos corrected. Some notations changed. Section III.C is embedded in Section III.B. Paper accepted to PR

    Donut and dynamic polarization effects in proton channeling through carbon nanotubes

    Get PDF
    We investigate the angular and spatial distributions of protons of the energy of 0.223 MeV after channeling through an (11,~9) single-wall carbon nanotube of the length of 0.2 μ\mum. The proton incident angle is varied between 0 and 10 mrad, being close to the critical angle for channeling. We show that, as the proton incident angle increases and approaches the critical angle for channeling, a ring-like structure is developed in the angular distribution - donut effect. We demonstrate that it is the rainbow effect. When the proton incident angle is between zero and a half of the critical angle for channeling, the image force affects considerably the number and positions of the maxima of the angular and spatial distributions. However, when the proton incident angle is close to the critical angle for channeling, its influence on the angular and spatial distributions is reduced strongly. We demonstrate that the increase of the proton incident angle can lead to a significant rearrangement of the propagating protons within the nanotube. This effect may be used to locate atomic impurities in nanotubes as well as for creating nanosized proton beams to be used in materials science, biology and medicine.Comment: 17 pages, 14 figure

    Dispersion in a relativistic degenerate electron gas

    Full text link
    Relativistic effects on dispersion in a degenerate electron gas are discussed by comparing known response functions derived relativistically (by Jancovici) and nonrelativistically (by Lindhard). The main distinguishing feature is one-photon pair creation, which leads to logarithmic singularities in the response functions. Dispersion curves for longitudinal waves have a similar tongue-like appearance in the relativistic and nonrelativistic case, with the main relativistic effects being on the Fermi speed and the cutoff frequency. For transverse waves the nonrelativistic treatment has a nonphysical feature near the cutoff frequency for large Fermi momenta, and this is attributed to an incorrect treatment of the electron spin. We find (with two important provisos) that one-photon pair creation is allowed in superdense plasmas, implying relatively strong coupling between transverse waves and pair creation.Comment: 17 pages, 9 figures. Submitted to Physical Review

    Orbital-Free Density Functional Theory: Kinetic Potentials and Ab-Initio Local Pseudopotentials

    Full text link
    In the density functional (DF) theory of Kohn and Sham, the kinetic energy of the ground state of a system of noninteracting electrons in a general external field is calculated using a set of orbitals. Orbital free methods attempt to calculate this directly from the electron density by approximating the universal but unknown kinetic energy density functional. However simple local approximations are inaccurate and it has proved very difficult to devise generally accurate nonlocal approximations. We focus instead on the kinetic potential, the functional derivative of the kinetic energy DF, which appears in the Euler equation for the electron density. We argue that the kinetic potential is more local and more amenable to simple physically motivated approximations in many relevant cases, and describe two pathways by which the value of the kinetic energy can be efficiently calculated. We propose two nonlocal orbital free kinetic potentials that reduce to known exact forms for both slowly varying and rapidly varying perturbations and also reproduce exact results for the linear response of the density of the homogeneous system to small perturbations. A simple and systematic approach for generating accurate and weak ab-initio local pseudopotentials which produce a smooth slowly varying valence component of the electron density is proposed for use in orbital free DF calculations of molecules and solids. The use of these local pseudopotentials further minimizes the possible errors from the kinetic potentials. Our theory yields results for the total energies and ionization energies of atoms, and for the shell structure in the atomic radial density profiles that are in very good agreement with calculations using the full Kohn-Sham theory.Comment: To be published in Phys. Rev.

    Muon-Induced Background Study for an Argon-Based Long Baseline Neutrino Experiment

    Full text link
    We evaluated rates of transversing muons, muon-induced fast neutrons, and production of 40^{40}Cl and other cosmogenically produced nuclei that pose as potential sources of background to the physics program proposed for an argon-based long baseline neutrino experiment at the Sanford Underground Research Facility (SURF). The Geant4 simulations were carried out with muons and muon-induced neutrons for both 800 ft (0.712 km.w.e.) and 4850 ft levels (4.3 km.w.e.). We developed analytic models to independently calculate the 40^{40}Cl production using the measured muon fluxes at different levels of the Homestake mine. The muon induced 40^{40}Cl production rates through stopped muon capture and the muon-induced neutrons and protons via (n,p) and (p,n) reactions were evaluated. We find that the Monte Carlo simulated production rates of 40^{40}Cl agree well with the predictions from analytic models. A depth-dependent parametrization was developed and benchmarked to the direct analytic models. We conclude that the muon-induced processes will result in large backgrounds to the physics proposed for an argon-based long baseline neutrino experiment at a depth of less than 4.0 km.w.e.Comment: 12 pages, 15 figure

    Leptonic contribution to the bulk viscosity of nuclear matter

    Full text link
    For beta-equilibrated nuclear matter we estimate the contribution to the bulk viscosity from purely leptonic processes, namely the conversion of electrons to and from muons. For oscillation frequencies in the kiloHertz range, we find that this process provides the dominant contribution to the bulk viscosity when the temperature is well below the critical temperature for superconductivity or superfluidity of the nuclear matter.Comment: 15 pages, LaTeX, new appendix and general clarifications in response to referee comment
    corecore