9,494 research outputs found

    A statistical analysis of Electromagnetic Ion Cyclotron (EMIC) waves and their correlation to the 11-year solar cycle

    Get PDF
    This thesis presents a statistical analysis of EMIC waves measured at Halley Research Station from 2008 through 2012. An introduction covering the origin of and theory behind EMIC waves is provided, along with a background covering previous statistical research regarding EMIC waves. Guidelines regarding EMIC wave definition and analysis are described along with examples of how they were used. The data shows an increase in the total number of EMIC waves as well as the number and percentage of EMIC waves with maximum frequency above 1 Hz during the 5-year period. The results suggest that the total number of EMIC waves and the proportion of EMIC waves with maximum frequency above 1 Hz increase with increasing solar activity. A future perspective in EMIC wave research is also provided

    Temperature-sensed cryogenic bleed maintains liquid state in transfer line

    Get PDF
    Inverted tee, installed at a high point in a cryogenic transfer line, is equipped with an insulated bleed line that passes a fixed amount of cryogenic fluid at atmospheric pressure. A sensing device activates a vent valve in the tee stack whenever gaseous nitrogen is present

    Inexpensive insulation is effective for cryogenic transfer lines

    Get PDF
    Matting cover thermally insulates cryogenic-liquid transfer pipelines. The matting consists of layers of commercially available fiber glass tape in which the fibers are randomly oriented in parallel planes

    A challenge to the Delta G~0 interpretation of hydrogen evolution

    Full text link
    Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G~0). However, many candidate non-precious metal catalysts bind hydrogen with similar strengths, but exhibit orders-of-magnitude lower activity for this reaction. In this study, we employ electronic structure methods that allow fully potential-dependent reaction barriers to be calculated, in order to develop a complete working picture of hydrogen evolution on platinum. Through the resulting ab initio microkinetic models, we assess the mechanistic origins of Pt's high activity. Surprisingly, we find that the G~0 hydrogen atoms are kinetically inert, and that the kinetically active hydrogen atoms have G's much weaker, similar to that of gold. These on-top hydrogens have particularly low barriers, which we compare to those of gold, explaining the high reaction rates, and the exponential variations in coverages can uniquely explain Pt's strong kinetic response to the applied potential. This explains the unique reactivity of Pt that is missed by conventional Sabatier analyses, and suggests true design criteria for non-precious alternatives

    Nonmetallic impurities improve mechanical properties of vapor-deposited tungsten

    Get PDF
    Mechanical properties of vapor deposited tungsten are improved by selective incorporation of various nonmetallic impurities. Addition of trace quantities of carbon, nitrogen, or oxygen can significantly increase both low and high temperature yield strength without greatly affecting ductile-to-brittle transition temperature

    Automated Microbial Metabolism Laboratory Final report

    Get PDF
    Photosynthesis activity during phosphate soil analysi

    "Dressing" lines and vertices in calculations of matrix elements with the coupled-cluster method and determination of Cs atomic properties

    Full text link
    We consider evaluation of matrix elements with the coupled-cluster method. Such calculations formally involve infinite number of terms and we devise a method of partial summation (dressing) of the resulting series. Our formalism is built upon an expansion of the product C†CC^\dagger C of cluster amplitudes CC into a sum of nn-body insertions. We consider two types of insertions: particle/hole line insertion and two-particle/two-hole random-phase-approximation-like insertion. We demonstrate how to ``dress'' these insertions and formulate iterative equations. We illustrate the dressing equations in the case when the cluster operator is truncated at single and double excitations. Using univalent systems as an example, we upgrade coupled-cluster diagrams for matrix elements with the dressed insertions and highlight a relation to pertinent fourth-order diagrams. We illustrate our formalism with relativistic calculations of hyperfine constant A(6s)A(6s) and 6s1/2−6p1/26s_{1/2}-6p_{1/2} electric-dipole transition amplitude for Cs atom. Finally, we augment the truncated coupled-cluster calculations with otherwise omitted fourth-order diagrams. The resulting analysis for Cs is complete through the fourth-order of many-body perturbation theory and reveals an important role of triple and disconnected quadruple excitations.Comment: 16 pages, 7 figures; submitted to Phys. Rev.

    Estimating the Expected Value of Partial Perfect Information in Health Economic Evaluations using Integrated Nested Laplace Approximation

    Get PDF
    The Expected Value of Perfect Partial Information (EVPPI) is a decision-theoretic measure of the "cost" of parametric uncertainty in decision making used principally in health economic decision making. Despite this decision-theoretic grounding, the uptake of EVPPI calculations in practice has been slow. This is in part due to the prohibitive computational time required to estimate the EVPPI via Monte Carlo simulations. However, recent developments have demonstrated that the EVPPI can be estimated by non-parametric regression methods, which have significantly decreased the computation time required to approximate the EVPPI. Under certain circumstances, high-dimensional Gaussian Process regression is suggested, but this can still be prohibitively expensive. Applying fast computation methods developed in spatial statistics using Integrated Nested Laplace Approximations (INLA) and projecting from a high-dimensional into a low-dimensional input space allows us to decrease the computation time for fitting these high-dimensional Gaussian Processes, often substantially. We demonstrate that the EVPPI calculated using our method for Gaussian Process regression is in line with the standard Gaussian Process regression method and that despite the apparent methodological complexity of this new method, R functions are available in the package BCEA to implement it simply and efficiently

    Geometry of effective Hamiltonians

    Full text link
    We give a complete geometrical description of the effective Hamiltonians common in nuclear shell model calculations. By recasting the theory in a manifestly geometric form, we reinterpret and clarify several points. Some of these results are hitherto unknown or unpublished. In particular, commuting observables and symmetries are discussed in detail. Simple and explicit proofs are given, and numerical algorithms are proposed, that improve and stabilize common methods used today.Comment: 1 figur

    Effects of additions of nonmetallics on the properties of vapor-deposited tungsten

    Get PDF
    Nonmetallic additive effects on properties of vapor deposited tungste
    • …
    corecore