7,160 research outputs found
Convergence of all-order many-body methods: coupled-cluster study for Li
We present and analyze results of the relativistic coupled-cluster
calculation of energies, hyperfine constants, and dipole matrix elements for
the , , and states of Li atom. The calculations are
complete through the fourth order of many-body perturbation theory for energies
and through the fifth order for matrix elements and subsume certain chains of
diagrams in all orders. A nearly complete many-body calculation allows us to
draw conclusions on the convergence pattern of the coupled-cluster method. Our
analysis suggests that the high-order many-body contributions to energies and
matrix elements scale proportionally and provides a quantitative ground for
semi-empirical fits of {\em ab inito} matrix elements to experimental energies.Comment: 4 pages, 3 figure
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
Interacting one-dimensional quantum systems play a pivotal role in physics.
Exact solutions can be obtained for the homogeneous case using the Bethe ansatz
and bosonisation techniques. However, these approaches are not applicable when
external confinement is present. Recent theoretical advances beyond the Bethe
ansatz and bosonisation allow us to predict the behaviour of one-dimensional
confined systems with strong short-range interactions, and new experiments with
cold atomic Fermi gases have already confirmed these theories. Here we
demonstrate that a simple linear combination of the strongly interacting
solution with the well-known solution in the limit of vanishing interactions
provides a simple and accurate description of the system for all values of the
interaction strength. This indicates that one can indeed capture the physics of
confined one-dimensional systems by knowledge of the limits using wave
functions that are much easier to handle than the output of typical numerical
approaches. We demonstrate our scheme for experimentally relevant systems with
up to six particles. Moreover, we show that our method works also in the case
of mixed systems of particles with different masses. This is an important
feature because these systems are known to be non-integrable and thus not
solvable by the Bethe ansatz technique.Comment: 22 pages including methods and supplementary materials, 11 figures,
title slightly change
Embodiment and designing learning environments
There is increasing recognition amongst learning sciences researchers of the critical role that the body plays in thinking and reasoning across contexts and across disciplines. This workshop brings ideas of embodied learning and embodied cognition to the design of instructional environments that engage learners in new ways of moving within, and acting upon, the physical world. Using data and artifacts from participants' research and designs as a starting point, this workshop focuses on strategies for how to effectively leverage embodiment in learning activities in both technology and non-technology environments. Methodologies for studying/assessing the body's role in learning are also addressed
Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory
Manipulating expressions in many-body perturbation theory becomes unwieldily
with increasing order of the perturbation theory. Here I derive a set of
theorems for efficient simplification of such expressions. The derived rules
are specifically designed for implementing with symbolic algebra tools. As an
illustration, we count the numbers of Brueckner-Goldstone diagrams in the first
several orders of many-body perturbation theory for matrix elements between two
states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from
http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm
Predictable Disruption Tolerant Networks and Delivery Guarantees
This article studies disruption tolerant networks (DTNs) where each node
knows the probabilistic distribution of contacts with other nodes. It proposes
a framework that allows one to formalize the behaviour of such a network. It
generalizes extreme cases that have been studied before where (a) either nodes
only know their contact frequency with each other or (b) they have a perfect
knowledge of who meets who and when. This paper then gives an example of how
this framework can be used; it shows how one can find a packet forwarding
algorithm optimized to meet the 'delay/bandwidth consumption' trade-off:
packets are duplicated so as to (statistically) guarantee a given delay or
delivery probability, but not too much so as to reduce the bandwidth, energy,
and memory consumption.Comment: 9 page
Relativistic many-body calculation of low-energy dielectronic resonances in Be-like carbon
We apply relativistic configuration-interaction method coupled with many-body
perturbation theory (CI+MBPT) to describe low-energy dielectronic
recombination. We combine the CI+MBPT approach with the complex rotation method
(CRM) and compute the dielectronic recombination spectrum for Li-like carbon
recombining into Be-like carbon. We demonstrate the utility and evaluate the
accuracy of this newly-developed CI+MBPT+CRM approach by comparing our results
with the results of the previous high-precision study of the CIII system
[Mannervik et al., Phys. Rev. Lett. 81, 313 (1998)].Comment: 6 pages, 1 figure; v2,v3: fixed reference
Resolving all-order method convergence problems for atomic physics applications
The development of the relativistic all-order method where all single,
double, and partial triple excitations of the Dirac-Hartree-Fock wave function
are included to all orders of perturbation theory led to many important results
for study of fundamental symmetries, development of atomic clocks, ultracold
atom physics, and others, as well as provided recommended values of many atomic
properties critically evaluated for their accuracy for large number of
monovalent systems. This approach requires iterative solutions of the
linearized coupled-cluster equations leading to convergence issues in some
cases where correlation corrections are particularly large or lead to an
oscillating pattern. Moreover, these issues also lead to similar problems in
the CI+all-order method for many-particle systems. In this work, we have
resolved most of the known convergence problems by applying two different
convergence stabilizer methods, reduced linear equation (RLE) and direct
inversion of iterative subspace (DIIS). Examples are presented for B, Al,
Zn, and Yb. Solving these convergence problems greatly expands the
number of atomic species that can be treated with the all-order methods and is
anticipated to facilitate many interesting future applications
Third-order many-body perturbation theory calculations for the beryllium and magnesium isoelectronic sequences
Relativistic third-order MBPT is applied to obtain energies of ions with two
valence electrons in the no virtual-pair approximation (NVPA). A total of 302
third-order Goldstone diagrams are organized into 12 one-body and 23 two-body
terms. Only third-order two-body terms and diagrams are presented here, owing
to the fact that the one-body terms are identical to the previously studied
third-order terms in monovalent ions. Dominant classes of diagrams are
identified. The model potential is a Dirac-Hartree-Fock potential,
and B-spline basis functions in a cavity of finite radius are employed in the
numerical calculations. The Breit interaction is taken into account through
second order of perturbation theory and the lowest-order Lamb shift is also
evaluated. Sample calculations are performed for berylliumlike ions with Z =
4--7, and for the magnesiumlike ion P IV. The third-order energies are in
excellent agreement with measurement with an accuracy at 0.2% level for the
cases considered. Comparisons are made with previous second-order MBPT results
and with other calculations. The third-order energy correction is shown to be
significant, improving second-order correlation energies by an order of
magnitude
Theoretical determination of lifetimes of metastable states in Sc III and Y III
Lifetimes of the first two metastable states in Sc^{2+} and Y^{2+} are
determined using the relativistic coupled-cluster theory. There is a
considerable interest in studying the electron correlation effects in these
ions as though their electronic configurations are similar to the neutral
alkali atoms, their structures are very different from the latter. We have made
a comparative study of the correlation trends between the above doubly ionized
systems with their corresponding neutral and singly ionized iso-electronic
systems. The lifetimes of the excited states of these ions are very important
in the field of astrophysics, especially for the study of post-main sequence
evolution of the cool giant stars.Comment: 13 pages, 1 figure and 5 table
- …