7,160 research outputs found

    Convergence of all-order many-body methods: coupled-cluster study for Li

    Full text link
    We present and analyze results of the relativistic coupled-cluster calculation of energies, hyperfine constants, and dipole matrix elements for the 2s2s, 2p1/22p_{1/2}, and 2p3/22p_{3/2} states of Li atom. The calculations are complete through the fourth order of many-body perturbation theory for energies and through the fifth order for matrix elements and subsume certain chains of diagrams in all orders. A nearly complete many-body calculation allows us to draw conclusions on the convergence pattern of the coupled-cluster method. Our analysis suggests that the high-order many-body contributions to energies and matrix elements scale proportionally and provides a quantitative ground for semi-empirical fits of {\em ab inito} matrix elements to experimental energies.Comment: 4 pages, 3 figure

    An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    Full text link
    Interacting one-dimensional quantum systems play a pivotal role in physics. Exact solutions can be obtained for the homogeneous case using the Bethe ansatz and bosonisation techniques. However, these approaches are not applicable when external confinement is present. Recent theoretical advances beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits using wave functions that are much easier to handle than the output of typical numerical approaches. We demonstrate our scheme for experimentally relevant systems with up to six particles. Moreover, we show that our method works also in the case of mixed systems of particles with different masses. This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique.Comment: 22 pages including methods and supplementary materials, 11 figures, title slightly change

    Embodiment and designing learning environments

    Get PDF
    There is increasing recognition amongst learning sciences researchers of the critical role that the body plays in thinking and reasoning across contexts and across disciplines. This workshop brings ideas of embodied learning and embodied cognition to the design of instructional environments that engage learners in new ways of moving within, and acting upon, the physical world. Using data and artifacts from participants' research and designs as a starting point, this workshop focuses on strategies for how to effectively leverage embodiment in learning activities in both technology and non-technology environments. Methodologies for studying/assessing the body's role in learning are also addressed

    Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory

    Full text link
    Manipulating expressions in many-body perturbation theory becomes unwieldily with increasing order of the perturbation theory. Here I derive a set of theorems for efficient simplification of such expressions. The derived rules are specifically designed for implementing with symbolic algebra tools. As an illustration, we count the numbers of Brueckner-Goldstone diagrams in the first several orders of many-body perturbation theory for matrix elements between two states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm

    Predictable Disruption Tolerant Networks and Delivery Guarantees

    Full text link
    This article studies disruption tolerant networks (DTNs) where each node knows the probabilistic distribution of contacts with other nodes. It proposes a framework that allows one to formalize the behaviour of such a network. It generalizes extreme cases that have been studied before where (a) either nodes only know their contact frequency with each other or (b) they have a perfect knowledge of who meets who and when. This paper then gives an example of how this framework can be used; it shows how one can find a packet forwarding algorithm optimized to meet the 'delay/bandwidth consumption' trade-off: packets are duplicated so as to (statistically) guarantee a given delay or delivery probability, but not too much so as to reduce the bandwidth, energy, and memory consumption.Comment: 9 page

    Relativistic many-body calculation of low-energy dielectronic resonances in Be-like carbon

    Full text link
    We apply relativistic configuration-interaction method coupled with many-body perturbation theory (CI+MBPT) to describe low-energy dielectronic recombination. We combine the CI+MBPT approach with the complex rotation method (CRM) and compute the dielectronic recombination spectrum for Li-like carbon recombining into Be-like carbon. We demonstrate the utility and evaluate the accuracy of this newly-developed CI+MBPT+CRM approach by comparing our results with the results of the previous high-precision study of the CIII system [Mannervik et al., Phys. Rev. Lett. 81, 313 (1998)].Comment: 6 pages, 1 figure; v2,v3: fixed reference

    Resolving all-order method convergence problems for atomic physics applications

    Full text link
    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the CI+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, reduced linear equation (RLE) and direct inversion of iterative subspace (DIIS). Examples are presented for B, Al, Zn+^+, and Yb+^+. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications

    Third-order many-body perturbation theory calculations for the beryllium and magnesium isoelectronic sequences

    Get PDF
    Relativistic third-order MBPT is applied to obtain energies of ions with two valence electrons in the no virtual-pair approximation (NVPA). A total of 302 third-order Goldstone diagrams are organized into 12 one-body and 23 two-body terms. Only third-order two-body terms and diagrams are presented here, owing to the fact that the one-body terms are identical to the previously studied third-order terms in monovalent ions. Dominant classes of diagrams are identified. The model potential is a Dirac-Hartree-Fock VN−2V^{N-2} potential, and B-spline basis functions in a cavity of finite radius are employed in the numerical calculations. The Breit interaction is taken into account through second order of perturbation theory and the lowest-order Lamb shift is also evaluated. Sample calculations are performed for berylliumlike ions with Z = 4--7, and for the magnesiumlike ion P IV. The third-order energies are in excellent agreement with measurement with an accuracy at 0.2% level for the cases considered. Comparisons are made with previous second-order MBPT results and with other calculations. The third-order energy correction is shown to be significant, improving second-order correlation energies by an order of magnitude

    Theoretical determination of lifetimes of metastable states in Sc III and Y III

    Full text link
    Lifetimes of the first two metastable states in Sc^{2+} and Y^{2+} are determined using the relativistic coupled-cluster theory. There is a considerable interest in studying the electron correlation effects in these ions as though their electronic configurations are similar to the neutral alkali atoms, their structures are very different from the latter. We have made a comparative study of the correlation trends between the above doubly ionized systems with their corresponding neutral and singly ionized iso-electronic systems. The lifetimes of the excited states of these ions are very important in the field of astrophysics, especially for the study of post-main sequence evolution of the cool giant stars.Comment: 13 pages, 1 figure and 5 table
    • …
    corecore