38 research outputs found

    Comparison of instruments for particle number size distribution measurements in air quality monitoring

    Get PDF
    Number size distributions of airborne particles are relevant to fields including ambient monitoring, pharmaceutical and automotive measurements. A number of commercially available instruments can be used to determine particle number size distributions including the Electrical Low Pressure Impactor (ELPI), Scanning Mobility Particle Sizer (SMPS), Fast Mobility Particle Sizer (FMPS) and the Aerodynamic Particle Sizer (APS). The comparability of the data provided by these instruments has not been fully tested for different kinds of aerosols. This study compared number size distributions of laboratory generated aerosols (TiO2, NaCl, fumed silica and soot) in a wind tunnel. Reasonable agreement was noted between the different instruments, though there were divergences. For example the ELPI was inconsistent at the upper and lower limits of its working size (at low concentrations). Instruments responded variably to different particle types, which has important implications for sampling heterogeneous particle mixtures such as those found in urban air. This study highlights the need for caution when comparing data obtained from different particle instruments, and demonstrates the requirement for further comparison studies in controlled settings using an assortment of particle types with the aim to standardise and harmonise particle sampling protocols.<br/

    Performance Evaluation of Workflows Using Continuous Petri Nets with Interval Firing Speeds

    No full text
    In this paper, we study performance evaluation of workflow-based information systems. Because of state space explosion, analysis by stochastic models, such as stochastic Petri nets and queuing models, is not suitable for workflow systems in which a large number of flow instances run concurrently. We use fluid-flow approximation technique to overcome this difficulty. In the proposed method, GSPN (Generalized Stochastic Petri Nets) models representing workflows are approximated by a class of timed continuous Petri nets, called routing timed continuous Petri nets (RTCPN). In RTCPN models, each discrete set is approximated by a continuous region on a real-valued vector space, and variance in probability distribution is replaced with a real-valued interval. Next we derive piecewise linear systems from RTCPN models, and use interval methods to compute guaranteed enclosures for state variables. As a case study, we solve an optimal resource assignment problem for a paper review process
    corecore