43 research outputs found

    Reproductive Trade-Offs May Moderate the Impact of Gyrodactylus salaris in Warmer Climates

    Get PDF
    Gyrodactylus salaris is a notifiable freshwater ectoparasite of salmonids. Its primary host is Atlantic salmon (Salmo salar), upon which infections can cause death, and have led to massive declines in salmon numbers in Norway, where the parasite is widespread. Different strains of S. salar vary in their susceptibility, with Atlantic strains (such as those found in Norway) exhibiting no resistance to the parasite, and Baltic strains demonstrating an innate resistance sufficient to regulate parasite numbers on the host causing it to either die out or persist at a low level. In this study, Leslie matrix and compartmental models were used to generate data that demonstrated the population growth of G. salaris on an individual host is dependent on the total number of offspring per parasite, its longevity and the timing of its births. The data demonstrated that the key factor determining the rate of G. salaris population growth is the time at which the parasite first gives birth, with rapid birth rate giving rise to large population size. Furthermore, it was shown that though the parasite can give birth up to four times, only two births are required for the population to persist as long as the first birth occurs before a parasite is three days old. As temperature is known to influence the timing of the parasite's first birth, greater impact may be predicted if introduced to countries with warmer climates than Norway, such as the UK and Ireland which are currently recognised to be free of G. salaris. However, the outputs from the models developed in this study suggest that temperature induced trade-offs between the total number of offspring the parasite gives birth to and the first birth timing may prevent increased population growth rates over those observed in Norway

    IL-10 production differentially influences the magnitude, quality, and protective capacity of Th1 responses depending on the vaccine platform

    Get PDF
    The quality of a Th1 response can be a prospective correlate of vaccine-mediated protection against certain intracellular pathogens. Using two distinct vaccine platforms, we evaluate the influence of interleukin (IL) 10 production on the magnitude, quality, and protective capacity of CD4+ T cell responses in the mouse model of Leishmania major infection. Multiparameter flow cytometry was used to delineate the CD4+ T cell production of interferon (IFN) γ, IL-2, tumor necrosis factor (TNF), and IL-10 (or combinations thereof) after vaccination. Immunization with a high dose of adenovirus (ADV) expressing leishmanial proteins (MML-ADV) elicited a limited proportion of multifunctional IFN-γ+IL-2+TNF+ Th1 cells, a high frequency of IL-10–producing CD4+ T cells, and did not protect against subsequent challenge. Surprisingly, in the absence of IL-10, there was no change in the magnitude, quality, or protective capacity of the Th1 response elicited by high-dose MML-ADV. In contrast, after immunization with MML protein and CpG (MML + CpG), IL-10 limited the production of IL-12 by DCs in vivo, thereby decreasing the generation of multifunctional Th1 cells. Consequently, three immunizations with MML + CpG were required for full protection. However, inhibiting IL-10 at the time of immunization enhanced the magnitude and quality of the Th1 response sufficiently to mediate protection after only a single immunization. Overall, we delineate distinct mechanisms by which vaccines elicit protective Th1 responses and underscore the importance of multifunctional CD4+ T cells

    A higher activation threshold of memory CD8+ T cells has a fitness cost that is modified by TCR affinity during Tuberculosis

    Get PDF
    All relevant data are within the paper and its Supporting Information files except for the primary TCR sequences. The data files for the primary TCR sequences are publicly deposited in the University of Massachusetts Medical School’s institutional repository, eScholarship@UMMS. The permanent link to the data is http://dx.doi.org/10.13028/M2CC70T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.This work was supported by NIH R01 AI106725 as well as fellowship funding to SC from NIH AI T32 007061 and the UMass GSBS Millennium Program. The Small Animal Biocontainment Suite was supported in part by Center for AIDS Research Grant P30 AI 060354. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Baltic Salmon, Salmo salar, from Swedish River Lule Älv Is More Resistant to Furunculosis Compared to Rainbow Trout

    Get PDF
    BACKGROUND: Furunculosis, caused by Aeromonas salmonicida, continues to be a major health problem for the growing salmonid aquaculture. Despite effective vaccination programs regular outbreaks occur at the fish farms calling for repeated antibiotic treatment. We hypothesized that a difference in natural susceptibility to this disease might exist between Baltic salmon and the widely used rainbow trout. STUDY DESIGN: A cohabitation challenge model was applied to investigate the relative susceptibility to infection with A. salmonicida in rainbow trout and Baltic salmon. The course of infection was monitored daily over a 30-day period post challenge and the results were summarized in mortality curves. RESULTS: A. salmonicida was recovered from mortalities during the entire test period. At day 30 the survival was 6.2% and 34.0% for rainbow trout and Baltic salmon, respectively. Significant differences in susceptibility to A. salmonicida were demonstrated between the two salmonids and hazard ratio estimation between rainbow trout and Baltic salmon showed a 3.36 higher risk of dying from the infection in the former. CONCLUSION: The finding that Baltic salmon carries a high level of natural resistance to furunculosis might raise new possibilities for salmonid aquaculture in terms of minimizing disease outbreaks and the use of antibiotics

    CAF01 Potentiates Immune Responses and Efficacy of an Inactivated Influenza Vaccine in Ferrets

    Get PDF
    Trivalent inactivated vaccines (TIV) against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6′-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines
    corecore