24 research outputs found

    Homocysteine, vitamin B12 and folate levels in premature coronary artery disease

    Get PDF
    BACKGROUND: Hyperhomocysteinemia is known as an independent risk factor of atherosclerosis, but the probable role of hyperhomocysteinemia in premature Coronary Artery Disease (CAD) is not well studied. The aim of this study was to assess the role of hyperhomocysteinemia, folate and Vitamin B12 deficiency in the development of premature CAD. METHODS: We performed an analytical case-control study on 294 individuals under 45 years (225 males and 69 females) who were admitted for selective coronary angiography to two centers in Tehran. RESULTS: After considering the exclusion criteria, a total number of 225 individuals were enrolled of which 43.1% had CAD. The mean age of participants was 39.9 +/- 4.3 years (40.1 +/- 4.2 years in males and 39.4 +/- 4.8 years in females). Compared to the control group, the level of homocysteine measured in the plasma of the male participants was significantly high (14.9 +/- 1.2 versus 20.3 +/- 1.9 micromol/lit, P = 0.01). However there was no significant difference in homocysteine level of females with and without CAD (11.8 +/- 1.3 versus 11.5 ± 1.1 micromol/lit, P = 0.87). Mean plasma level of folic acid and vitamin B12 in the study group were 6.3 +/- 0.2 and 282.5 +/- 9.1 respectively. Based on these findings, 10.7% of the study group had folate deficiency while 26.6% had Vitamin B12 deficiency. Logistic regression analysis for evaluating independent CAD risk factors showed hyperhomocysteinemia as an independent risk factor for premature CAD in males (OR = 2.54 0.95% CI 1.23 to 5.22, P = 0.01). Study for the underlying causes of hyperhomocysteinemia showed that male gender and Vitamin B12 deficiency had significant influence on incidence of hyperhomocysteinemia. CONCLUSION: We may conclude that hyperhomocysteinemia is an independent risk factor for CAD in young patients (bellow 45 years old) – especially in men -and vitamin B12 deficiency is a preventable cause of hyperhomocysteinemia

    Robust physical methods that enrich genomic regions identical by descent for linkage studies: confirmation of a locus for osteogenesis imperfecta

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The monogenic disease osteogenesis imperfecta (OI) is due to single mutations in either of the collagen genes ColA1 or ColA2, but within the same family a given mutation is accompanied by a wide range of disease severity. Although this phenotypic variability implies the existence of modifier gene variants, genome wide scanning of DNA from OI patients has not been reported. Promising genome wide marker-independent physical methods for identifying disease-related loci have lacked robustness for widespread applicability. Therefore we sought to improve these methods and demonstrate their performance to identify known and novel loci relevant to OI.</p> <p>Results</p> <p>We have improved methods for enriching regions of identity-by-descent (IBD) shared between related, afflicted individuals. The extent of enrichment exceeds 10- to 50-fold for some loci. The efficiency of the new process is shown by confirmation of the identification of the Col1A2 locus in osteogenesis imperfecta patients from Amish families. Moreover the analysis revealed additional candidate linkage loci that may harbour modifier genes for OI; a locus on chromosome 1q includes COX-2, a gene implicated in osteogenesis.</p> <p>Conclusion</p> <p>Technology for physical enrichment of IBD loci is now robust and applicable for finding genes for monogenic diseases and genes for complex diseases. The data support the further investigation of genetic loci other than collagen gene loci to identify genes affecting the clinical expression of osteogenesis imperfecta. The discrimination of IBD mapping will be enhanced when the IBD enrichment procedure is coupled with deep resequencing.</p

    Dysfunction of the Voltage-Gated K+ Channel beta 2 Subunit in a Familial Case of Brugada Syndrome

    No full text
    International audienceBackground-The Brugada syndrome is an inherited cardiac arrhythmia associated with high risk of sudden death. Although 20% of patients with Brugada syndrome carry mutations in SCN5A, the molecular mechanisms underlying this condition are still largely unknown. Methods and Results-We combined whole-exome sequencing and linkage analysis to identify the genetic variant likely causing Brugada syndrome in a pedigree for which SCN5A mutations had been excluded. This approach identified 6 genetic variants cosegregating with the Brugada electrocardiographic pattern within the pedigree. In silico gene prioritization pointed to 1 variant residing in KCNAB2, which encodes the voltage-gated K+ channel beta 2-subunit (Kv beta 2-R12Q). Kv beta 2 is widely expressed in the human heart and has been shown to interact with the fast transient outward K+ channel subunit Kv4.3, increasing its current density. By targeted sequencing of the KCNAB2 gene in 167 unrelated patients with Brugada syndrome, we found 2 additional rare missense variants (L13F and V114I). We then investigated the physiological effects of the 3 KCNAB2 variants by using cellular electrophysiology and biochemistry. Patch-clamp experiments performed in COS-7 cells expressing both Kv4.3 and Kv beta 2 revealed a significant increase in the current density in presence of the R12Q and L13F Kv beta 2 mutants. Although biotinylation assays showed no differences in the expression of Kv4.3, the total and submembrane expression of Kv beta 2-R12Q were significantly increased in comparison with wild-type Kv beta 2. Conclusions-Altogether, our results indicate that Kv beta 2 dysfunction can contribute to the Brugada electrocardiographic pattern

    Chronische Herzinsuffizienz

    No full text
    corecore