307 research outputs found

    Molecular Gastronomy: A Food Fad or an Interface for Science-based Cooking?

    Get PDF
    A review is given over the field of molecular gastronomy and its relation to science and cooking. We begin with a brief history of the field of molecular gastronomy, the definition of the term itself, and the current controversy surrounding this term. We then highlight the distinction between molecular gastronomy and science-based cooking, and we discuss both the similarities and the distinctions between science and cooking. In particular, we highlight the fact that the kitchen serves as an ideal place to foster interactions between scientists and chefs that lead to benefits for the general public in the form of novel and high-quality foods. On the one hand, it can facilitate the implementation of new ideas and recipes in restaurants. On the other hand, it challenges scientists to apply their fundamental scientific understanding to the complexities of cooking, and it challenges them to expand the scientific understanding of many chemical and physical mechanisms beyond the common mass-produced food products. In addition, molecular gastronomy forms an ideal base to educate the general public about the basic principles of science and cooking and how they can be utilized to improve the awareness of the role of food and nutrition for the quality of life

    Exploring Research through Design in Animal-Computer Interaction

    Get PDF
    This paper explores Research through Design (RtD) as a potential methodology for developing new interactive experiences for animals. We present an example study from an on-going project and examine whether RtD offers an appropriate framework for developing knowledge in the context of Animal-Computer Interaction, as well as considering how best to document such work. We discuss the design journey we undertook to develop interactive systems for captive elephants and the extent to which RtD has enabled us to explore concept development and documentation of research. As a result of our explorations, we propose that particular aspects of RtD can help ACI researchers gain fresh perspectives on the design of technology-enabled devices for non-human animals. We argue that these methods of working can support the investigation of particular and complex situations where no idiomatic interactions yet exist, where collaborative practice is desirable and where the designed objects themselves offer a conceptual window for future research and development

    Meditation-induced bliss viewed as release from conditioned neural (thought) patterns that block reward signals in the brain pleasure center

    Get PDF
    The nucleus accumbens orchestrates processes related to reward and pleasure, including the addictive consequences of repeated reward (e.g., drug addiction and compulsive gambling) and the accompanying feelings of craving and anhedonia. The neurotransmitters dopamine and endogenous opiates play interactive roles in these processes. They are released by natural rewards (i.e., food, water, sex, money, play, etc.) and are released or mimicked by drugs of abuse. Repeated drug use induces conditioned down-regulation of these neurotransmitters, thus causing painful suppression of everyday pleasure. As with many spiritual traditions, Buddhism provides strong advice against the pursuit of worldly pleasures to attain the ‘‘good life.’’ In contrast, many forms of meditation give rise to an immense and abiding joy. Most of these practices involve ‘‘stilling the mind,’’ whereby all content-laden thought (e.g., fantasies, daydreams, plans) ceases, and the mind enters a state of openness, formlessness, clarity, and bliss. This can be explained by the Buddhist suggestion that almost all of our everyday thoughts are a form of addiction. It follows that if we turn off this internal ‘‘gossip of ego,’’ we will find relief from the biochemical dopamine/opiate down-regulation, which is, perhaps, the perpetual concomitant of our daily rumination

    ESAO: A holistic Ecosystem-Driven Analysis Model

    Get PDF
    The growing importance of software ecosystems and open innovation requires that companies become more intentional about aligning their internal strategy, architecture and organizing efforts with the ecosystem that the company is part of. Few models exist that facilitate analysis and improvement of this alignment. In this paper, we present the ESAO model and describe its six main components. Organizations and researchers can use the model to analyze the alignment between the different parts of their business, technologies and ways of working, internally and in the ecosystem. The model is illustrated and validated through the use of three case studies

    Quantum Monte Carlo and variational approaches to the Holstein model

    Full text link
    Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort. A principal component representation of the phonon degrees of freedom allows to sample completely uncorrelated phonon configurations. The combination of these elements enables us to perform efficient simulations for a wide range of temperature, phonon frequency and electron-phonon coupling on clusters large enough to avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the many-electron case. In the one-electron case considered here, the physics of the Holstein model can be described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte

    Spatial representation of temporal information through spike timing dependent plasticity

    Get PDF
    We suggest a mechanism based on spike time dependent plasticity (STDP) of synapses to store, retrieve and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated input of a limited number of of temporal sequences the system is able to complete the temporal sequence upon receiving the input of a fraction of them. This is an example of effective unsupervised learning in an biologically realistic system. We investigate the dependence of learning success on entrainment time, system size and presence of noise. Possible applications include learning of motor sequences, recognition and prediction of temporal sensory information in the visual as well as the auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio

    Spin, charge and orbital ordering in ferrimagnetic insulator YBaMn2_2O5_5

    Full text link
    The oxygen-deficient (double) perovskite YBaMn2_2O5_5, containing corner-linked MnO5_5 square pyramids, is found to exhibit ferrimagnetic ordering in its ground state. In the present work we report generalized-gradient-corrected, relativistic first-principles full-potential density-functional calculations performed on YBaMn2_2O5_5 in the nonmagnetic, ferromagnetic and ferrimagnetic states. The charge, orbital and spin orderings are explained with site-, angular momentum- and orbital-projected density of states, charge-density plots, electronic structure and total energy studies. YBaMn2_2O5_5 is found to stabilize in a G-type ferrimagnetic state in accordance with experimental results. The experimentally observed insulating behavior appears only when we include ferrimagnetic ordering in our calculation. We observed significant optical anisotropy in this material originating from the combined effect of ferrimagnetic ordering and crystal field splitting. In order to gain knowledge about the presence of different valence states for Mn in YBaMn2_2O5_5 we have calculated KK-edge x-ray absorption near-edge spectra for the Mn and O atoms. The presence of the different valence states for Mn is clearly established from the x-ray absorption near-edge spectra, hyperfine field parameters and the magnetic properties study. Among the experimentally proposed structures, the recently reported description based on PP4/nmmnmm is found to represent the stable structure
    • …
    corecore