11,348 research outputs found

    Why current-carrying magnetic flux tubes gobble up plasma and become thin as a result

    Get PDF
    It is shown that if a current-carrying magnetic flux tube is bulged at its axial midpoint z=0 and constricted at its axial endpoints z=+h,-h, then plasma will be accelerated from z=+h,-h towards z=0 resulting in a situation similar to two water jets pointed at each other. The ingested plasma convects embedded, frozen-in toroidal magnetic flux from z=+h,-h to z=0. The counter-directed flows collide and stagnate at z=0 and in so doing (i) convert their translational kinetic energy into heat, (ii) increase the plasma density at z~0, and (iii) increase the embedded toroidal flux density at z~0. The increase in toroidal flux density at z~0 increases the toroidal field Bphi and hence increases the magnetic pinch force at z~0 and so causes a reduction of the flux tube radius at z~0. Thus, the flux tube develops an axially uniform cross-section, a decreased volume, an increased density, and an increased temperature. This model is proposed as a likely hypothesis for the long-standing mystery of why solar coronal loops are observed to be axially uniform, hot, and bright.Comment: to appear in Physics of Plasmas 24 pages, 5 figure

    Preoperative predictors of knee range of motion during stair walking after total knee replacement

    Get PDF
    This paper discusses the preoperative predictors of knee range of motion during stair walking after total knee replacement. It was presented at the 17th Annual Meeting of the European Society of Movement Analysis for Adults and Children (ESMAC) in 2008

    Unstable coronal loops : numerical simulations with predicted observational signatures

    Get PDF
    We present numerical studies of the nonlinear, resistive magnetohydrodynamic (MHD) evolution of coronal loops. For these simulations we assume that the loops carry no net current, as might be expected if the loop had evolved due to vortex flows. Furthermore the initial equilibrium is taken to be a cylindrical flux tube with line-tied ends. For a given amount of twist in the magnetic field it is well known that once such a loop exceeds a critical length it becomes unstableto ideal MHD instabilities. The early evolution of these instabilities generates large current concentrations. Firstly we show that these current concentrations are consistent with the formation of a current sheet. Magnetic reconnection can only occur in the vicinity of these current concentrations and we therefore couple the resistivity to the local current density. This has the advantage of avoiding resistive diffusion in regions where it should be negligible. We demonstrate the importance of this procedure by comparison with simulations based on a uniform resistivity. From our numerical experiments we are able to estimate some observational signatures for unstable coronal loops. These signatures include: the timescale of the loop brightening; the temperature increase; the energy released and the predicted observable flow speeds. Finally we discuss to what extent these observational signatures are consistent with the properties of transient brightening loops.Comment: 13 pages, 9 figure

    Robust Randomness Amplifiers: Upper and Lower Bounds

    Get PDF
    A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior existence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are non-signaling). We call protocols achieving such certified amplification of a short random seed randomness amplifiers. We introduce a simple framework in which we initiate the systematic study of the possibilities and limitations of randomness amplifiers. Our main results include a new, improved analysis of a robust randomness amplifier with exponential expansion, as well as the first upper bounds on the maximum expansion achievable by a broad class of randomness amplifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to noise cannot achieve more than doubly exponential expansion. Finally, we show that a wide class of protocols based on the use of the CHSH game can only lead to (singly) exponential expansion if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound results apply to all known non-adaptive randomness amplifier constructions to date.Comment: 28 pages. Comments welcom

    Entanglement cost of generalised measurements

    Full text link
    Bipartite entanglement is one of the fundamental quantifiable resources of quantum information theory. We propose a new application of this resource to the theory of quantum measurements. According to Naimark's theorem any rank 1 generalised measurement (POVM) M may be represented as a von Neumann measurement in an extended (tensor product) space of the system plus ancilla. By considering a suitable average of the entanglements of these measurement directions and minimising over all Naimark extensions, we define a notion of entanglement cost E_min(M) of M. We give a constructive means of characterising all Naimark extensions of a given POVM. We identify various classes of POVMs with zero and non-zero cost and explicitly characterise all POVMs in 2 dimensions having zero cost. We prove a constant upper bound on the entanglement cost of any POVM in any dimension. Hence the asymptotic entanglement cost (i.e. the large n limit of the cost of n applications of M, divided by n) is zero for all POVMs. The trine measurement is defined by three rank 1 elements, with directions symmetrically placed around a great circle on the Bloch sphere. We give an analytic expression for its entanglement cost. Defining a normalised cost of any d-dimensional POVM by E_min(M)/log(d), we show (using a combination of analytic and numerical techniques) that the trine measurement is more costly than any other POVM with d>2, or with d=2 and ancilla dimension 2. This strongly suggests that the trine measurement is the most costly of all POVMs.Comment: 20 pages, plain late

    Measuring Polynomial Invariants of Multi-Party Quantum States

    Get PDF
    We present networks for directly estimating the polynomial invariants of multi-party quantum states under local transformations. The structure of these networks is closely related to the structure of the invariants themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Specifically, our networks estimate the invariants under local unitary (LU) transformations and under stochastic local operations and classical communication (SLOCC). Our networks can estimate the LU invariants for multi-party states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants for multi-qubit states. We analyze the statistical efficiency of our networks compared to methods based on estimating the state coefficients and calculating the invariants.Comment: 8 pages, 4 figures, RevTex4, v2 references update

    Bipartite Mixed States of Infinite-Dimensional Systems are Generically Nonseparable

    Get PDF
    Given a bipartite quantum system represented by a tensor product of two Hilbert spaces, we give an elementary argument showing that if either component space is infinite-dimensional, then the set of nonseparable density operators is trace-norm dense in the set of all density operators (and the separable density operators nowhere dense). This result complements recent detailed investigations of separability, which show that when both component Hilbert spaces are finite-dimensional, there is a separable neighborhood (perhaps very small for large dimensions) of the maximally mixed state.Comment: 5 pages, RevTe

    Numerical Investigation of Light Scattering off Split-Ring Resonators

    Full text link
    Recently, split ring-resonators (SRR's) have been realized experimentally in the near infrared (NIR) and optical regime. In this contribution we numerically investigate light propagation through an array of metallic SRR's in the NIR and optical regime and compare our results to experimental results. We find numerical solutions to the time-harmonic Maxwell's equations by using advanced finite-element-methods (FEM). The geometry of the problem is discretized with unstructured tetrahedral meshes. Higher order, vectorial elements (edge elements) are used as ansatz functions. Transparent boundary conditions and periodic boundary conditions are implemented, which allow to treat light scattering problems off periodic structures. This simulation tool enables us to obtain transmission and reflection spectra of plane waves which are incident onto the SRR array under arbitrary angles of incidence, with arbitrary polarization, and with arbitrary wavelength-dependencies of the permittivity tensor. We compare the computed spectra to experimental results and investigate resonances of the system.Comment: 9 pages, 8 figures (see original publication for images with a better resolution

    Charge ordering in extended Hubbard models: Variational cluster approach

    Full text link
    We present a generalization of the recently proposed variational cluster perturbation theory to extended Hubbard models at half filling with repulsive nearest neighbor interaction. The method takes into account short-range correlations correctly by the exact diagonalisation of clusters of finite size, whereas long-range order beyond the size of the clusters is treated on a mean-field level. For one dimension, we show that quantum Monte Carlo and density-matrix renormalization-group results can be reproduced with very good accuracy. Moreover we apply the method to the two-dimensional extended Hubbard model on a square lattice. In contrast to the one-dimensional case, a first order phase transition between spin density wave phase and charge density wave phase is found as function of the nearest-neighbor interaction at onsite interactions U>=3t. The single-particle spectral function is calculated for both the one-dimensional and the two-dimensional system.Comment: 15 pages, 12 figure

    Photoemission spectra of many-polaron systems

    Full text link
    The cross over from low to high carrier densities in a many-polaron system is studied in the framework of the one-dimensional spinless Holstein model, using unbiased numerical methods. Combining a novel quantum Monte Carlo approach and exact diagonalization, accurate results for the single-particle spectrum and the electronic kinetic energy on fairly large systems are obtained. A detailed investigation of the quality of the Monte Carlo data is presented. In the physically most important adiabatic intermediate electron-phonon coupling regime, for which no analytical results are available, we observe a dissociation of polarons with increasing band filling, leading to normal metallic behavior, while for parameters favoring small polarons, no such density-driven changes occur. The present work points towards the inadequacy of single-polaron theories for a number of polaronic materials such as the manganites.Comment: 15 pages, 13 figures; final version, accepted for publication in Phys. Rev.
    • …
    corecore