1,340 research outputs found

    A Flexible Privacy-preserving Framework for Singular Value Decomposition under Internet of Things Environment

    Full text link
    The singular value decomposition (SVD) is a widely used matrix factorization tool which underlies plenty of useful applications, e.g. recommendation system, abnormal detection and data compression. Under the environment of emerging Internet of Things (IoT), there would be an increasing demand for data analysis to better human's lives and create new economic growth points. Moreover, due to the large scope of IoT, most of the data analysis work should be done in the network edge, i.e. handled by fog computing. However, the devices which provide fog computing may not be trustable while the data privacy is often the significant concern of the IoT application users. Thus, when performing SVD for data analysis purpose, the privacy of user data should be preserved. Based on the above reasons, in this paper, we propose a privacy-preserving fog computing framework for SVD computation. The security and performance analysis shows the practicability of the proposed framework. Furthermore, since different applications may utilize the result of SVD operation in different ways, three applications with different objectives are introduced to show how the framework could flexibly achieve the purposes of different applications, which indicates the flexibility of the design.Comment: 24 pages, 4 figure

    Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles

    Full text link
    Symmetry and reciprocity constraints on polarization state of the field diffracted by gratings of quasi-planar particles are considered. It is shown that the optical activity effects observed recently in arrays of quasi-planar plasmonic particles on a dielectric substrate are due to the reflection of the field at the air-dielectric slab interface and are proportional to this reflection coefficient.Comment: 11 pages, 3 figures, 12 references; minor corrections for better appearanc

    CSO Impact Assessment for the Licking River

    Get PDF
    This report contains the results of a combined sewer overflow (CSO) impact assessment study for a four-mile section of the Licking River just south of its confluence with the Ohio River and between Kenton and Campbell Counties in Northern Kentucky. This study is a component of a larger study that was conducted to determine the general impact of CSOs in the Northern Kentucky Region. The study was conducted through the Kentucky Water Resources Research Institute of the University of Kentucky and was funded by the Kentucky Natural Resources and Environmental Protection Cabinet through a grant from the United States Environmental Protection Agency

    Development of a Data Analysis Framework for CSOs

    Get PDF
    This report records the progress made in satisfying the two primary objectives associated with the project. The specific objectives include: 1. To develop a database framework for use in assessment and management of combined sewer overflows in Kentucky. 2. To assess the impact of CSOs on the water quality of the Northern Kentucky region through data collection and analysis and preliminary model construction. During the first year of the project, extensive data collection and analysis was performed on Banklick Creek which flows into the Licking River approximately 3 miles south of the confluence of the Licking River with the Ohio River. The results of this study have been reported previously (Ormsbee, et. al., 1994a). During the second year of the project the primary focus shifted to the Licking River. The results of this study have been reported in a separate study (Ormsbee et.al., 1995)

    Ubiquity of optical activity in planar metamaterial scatterers

    Full text link
    Recently it was discovered that periodic lattices of metamaterial scatterers show optical activity, even if the scatterers or lattice show no 2D or 3D chirality, if the illumination breaks symmetry. In this Letter we demonstrate that such `pseudo-chirality' is intrinsic to any single planar metamaterial scatterer and in fact has a well-defined value at a universal bound. We argue that in any circuit model, a nonzero electric and magnetic polarizability derived from a single resonance automatically imply strong bianisotropy, i.e., magneto-electric cross polarizability at the universal bound set by energy conservation. We confirm our claim by extracting polarizability tensors and cross sections for handed excitation from transmission measurements on near-infrared split ring arrays, and electrodynamic simulations for diverse metamaterial scatterers.Comment: 5 pages, 4 figure

    Non-malleable encryption: simpler, shorter, stronger

    Get PDF
    In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit

    Mutual Coherence of Polarized Light in Disordered Media: Two-Frequency Method Extended

    Full text link
    The paper addresses the two-point correlations of electromagnetic waves in general random, bi-anisotropic media whose constitutive tensors are complex Hermitian, positive- or negative-definite matrices. A simplified version of the two-frequency Wigner distribution (2f-WD) for polarized waves is introduced and the closed form Wigner-Moyal equation is derived from the Maxwell equations. In the weak-disorder regime with an arbitrarily varying background the two-frequency radiative transfer (2f-RT) equations for the associated 2Ă—22\times 2 coherence matrices are derived from the Wigner-Moyal equation by using the multiple scale expansion. In birefringent media, the coherence matrix becomes a scalar and the 2f-RT equations take the scalar form due to the absence of depolarization. A paraxial approximation is developed for spatialy anisotropic media. Examples of isotropic, chiral, uniaxial and gyrotropic media are discussed

    Perturbation theory for anisotropic dielectric interfaces, and application to sub-pixel smoothing of discretized numerical methods

    Full text link
    We derive a correct first-order perturbation theory in electromagnetism for cases where an interface between two anisotropic dielectric materials is slightly shifted. Most previous perturbative methods give incorrect results for this case, even to lowest order, because of the complicated discontinuous boundary conditions on the electric field at such an interface. Our final expression is simply a surface integral, over the material interface, of the continuous field components from the unperturbed structure. The derivation is based on a "localized" coordinate-transformation technique, which avoids both the problem of field discontinuities and the challenge of constructing an explicit coordinate transformation by taking a limit in which a coordinate perturbation is infinitesimally localized around the boundary. Not only is our result potentially useful in evaluating boundary perturbations, e.g. from fabrication imperfections, in highly anisotropic media such as many metamaterials, but it also has a direct application in numerical electromagnetism. In particular, we show how it leads to a sub-pixel smoothing scheme to ameliorate staircasing effects in discretized simulations of anisotropic media, in such a way as to greatly reduce the numerical errors compared to other proposed smoothing schemes.Comment: 10 page

    On homogenization of electromagnetic crystals formed by uniaxial resonant scatterers

    Full text link
    Dispersion properties of electromagnetic crystals formed by small uniaxial resonant scatterers (magnetic or electric) are studied using the local field approach. The goal of the study is to determine the conditions under which the homogenization of such crystals can be made. Therefore the consideration is limited by the frequency region where the wavelength in the host medium is larger than the lattice periods. It is demonstrated that together with known restriction for the homogenization related with the large values of the material parameters there is an additional restriction related with their small absolute values. From the other hand, the homogenization becomes allowed in both cases of large and small material parameters for special directions of propagation. Two unusual effects inherent to the crystals under consideration are revealed: flat isofrequency contour which allows subwavelength imaging using canalization regime and birefringence of extraordinary modes which can be used for beam splitting.Comment: 16 pages, 12 figures, submitted to PR

    Anisotropy and oblique total transmission at a planar negative-index interface

    Full text link
    We show that a class of negative index (n) materials has interesting anisotropic optical properties, manifest in the effective refraction index that can be positive, negative, or purely imaginary under different incidence conditions. With dispersion taken into account, reflection at a planar negative-index interface exhibits frequency selective total oblique transmission that is distinct from the Brewster effect. Finite-difference-time-domain simulation of realistic negative-n structures confirms the analytic results based on effective indices.Comment: to appear in Phys. Rev.
    • …
    corecore