85 research outputs found

    Phase II trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas

    Get PDF
    We conducted a phase II trial to evaluate the efficacy and toxicity of radiotherapy immediately after hyperbaric oxygenation (HBO) with chemotherapy in adults with high-grade gliomas. Patients with histologically confirmed high-grade gliomas were administered radiotherapy in daily 2 Gy fractions for 5 consecutive days per week up to a total dose of 60 Gy. Each fraction was administered immediately after HBO with the period of time from completion of decompression to irradiation being less than 15 min. Chemotherapy consisted of procarbazine, nimustine (ACNU) and vincristine and was administered during and after radiotherapy. A total of 41 patients (31 patients with glioblastoma and 10 patients with grade 3 gliomas) were enrolled. All 41 patients were able to complete a total radiotherapy dose of 60 Gy immediately after HBO with one course of concurrent chemotherapy. Of 30 assessable patients, 17 (57%) had an objective response including four CR and 13 PR. The median time to progression and the median survival time in glioblastoma patients were 12.3 months and 17.3 months, respectively. On univariate analysis, histologic grade (P=0.0001) and Karnofsky performance status (P=0.036) had a significant impact on survival, and on multivariate analysis, histologic grade alone was a significant prognostic factor for survival (P=0.001). Although grade 4 leukopenia and grade 4 thrombocytopenia occurred in 10 and 7% of all patients, respectively, these were transient with no patients developing neutropenic fever or intracranial haemorrhage. No serious nonhaematological or late toxicities were seen. These results indicated that radiotherapy delivered immediately after HBO with chemotherapy was safe with virtually no late toxicity in patients with high-grade gliomas. Further studies are required to strictly evaluate the effectiveness of radiotherapy after HBO for these tumours

    Functional Electrical Stimulation of Intrinsic Laryngeal Muscles under Varying Loads in Exercising Horses

    Get PDF
    Bilateral vocal fold paralysis (BVCP) is a life threatening condition and appears to be a good candidate for therapy using functional electrical stimulation (FES). Developing a working FES system has been technically difficult due to the inaccessible location and small size of the sole arytenoid abductor, the posterior cricoarytenoid (PCA) muscle. A naturally-occurring disease in horses shares many functional and etiological features with BVCP. In this study, the feasibility of FES for equine vocal fold paralysis was explored by testing arytenoid abduction evoked by electrical stimulation of the PCA muscle. Rheobase and chronaxie were determined for innervated PCA muscle. We then tested the hypothesis that direct muscle stimulation can maintain airway patency during strenuous exercise in horses with induced transient conduction block of the laryngeal motor nerve. Six adult horses were instrumented with a single bipolar intra-muscular electrode in the left PCA muscle. Rheobase and chronaxie were within the normal range for innervated muscle at 0.55±0.38 v and 0.38±0.19 ms respectively. Intramuscular stimulation of the PCA muscle significantly improved arytenoid abduction at all levels of exercise intensity and there was no significant difference between the level of abduction achieved with stimulation and control values under moderate loads. The equine larynx may provide a useful model for the study of bilateral fold paralysis

    Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    Get PDF
    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease

    Reproducibility of Transcranial Doppler ultrasound in the middle cerebral artery

    Get PDF
    Abstract Background Transcranial Doppler ultrasound remains the only imaging modality that is capable of real-time measurements of blood flow velocity and microembolic signals in the cerebral circulation. We here assessed the repeatability and reproducibility of transcranial Doppler ultrasound in healthy volunteers and patients with symptomatic carotid artery stenosis. Methods Between March and August 2017, we recruited 20 healthy volunteers and 20 patients with symptomatic carotid artery stenosis. In a quiet temperature-controlled room, two 1-h transcranial Doppler measurements of blood flow velocities and microembolic signals were performed sequentially on the same day (within-day repeatability) and a third 7–14 days later (between-day reproducibility). Levels of agreement were assessed by interclass correlation co-efficient. Results In healthy volunteers (31±9 years, 11 male), within-day repeatability of Doppler measurements were 0.880 (95% CI 0.726–0.950) for peak velocity, 0.867 (95% CI 0.700–0.945) for mean velocity, and 0.887 (95% CI 0.741–0.953) for end-diastolic velocity. Between-day reproducibility was similar but lower: 0.777 (95% CI 0.526–0.905), 0.795 (95% CI 0.558–0.913), and 0.674 (95% CI 0.349–0.856) respectively. In patients (72±11 years, 11 male), within-day repeatability of Doppler measurements were higher: 0.926 (95% CI 0.826–0.970) for peak velocity, 0.922 (95% CI 0.817–0.968) for mean velocity, and 0.868 (95% CI 0.701–0.945) for end-diastolic velocity. Similarly, between-day reproducibility revealed lower values: 0.800 (95% CI 0.567–0.915), 0.786 (95% CI 0.542–0.909), and 0.778 (95% CI 0.527–0.905) respectively. In both cohorts, the intra-observer Bland Altman analysis demonstrated acceptable mean measurement differences and limits of agreement between series of middle cerebral artery velocity measurements with very few outliers. In patients, the carotid stenoses were 30–40% (n = 9), 40–50% (n = 6), 50–70% (n = 3) and > 70% (n = 2). No spontaneous embolisation was detected in either of the groups. Conclusions Transcranial Doppler generates reproducible data regarding the middle cerebral artery velocities. However, larger studies are needed to validate its clinical applicability. Trial registration ClinicalTrial.gov (ID NCT 03050567), retrospectively registered on 15/05/2017
    corecore