125 research outputs found

    Sensing context: Inhibitory receptors on non-hematopoietic cells

    Get PDF
    Similar to immune cells, non-hematopoietic cells recognize microbial and endogenous threats. Their response to these stimuli is dependent on the environmental context. For example, intact intestinal epithelium expresses pattern recognition receptors (PRRs) but should tolerate commensal bacteria, while damaged epithelium should respond promptly to initiate an immune response. This indicates that non-hematopoietic cells possess mechanisms to sense environmental context and regulate their responses. Inhibitory receptors provide context sensing to immune cells. For instance, they raise the threshold for activation to prevent overzealous immune activation to harmless stimuli. Inhibitory receptors are typically studied on hematopoietic cells, but several of these receptors are expressed on non-hematopoietic cells. Here, we review evidence for the regulation of non-hematopoietic cells by inhibitory receptors, focusing on epithelial and endothelial cells. We explain that inhibitory receptors on these cells can sense a wide range of signals, including cell-cell adhesion, cell-matrix adhesion, and apoptotic cells. More importantly, they regulate various functions on these cells, including immune activation, proliferation, and migration. In conclusion, we propose that inhibitory receptors provide context to non-hematopoietic cells by fine tuning their response to endogenous or microbial stimuli. These findings prompt to investigate the functions of inhibitory receptors on non-hematopoietic cells more systematically

    Understanding the matrix: collagen modifications in tumors and their implications for immunotherapy

    Get PDF
    Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer

    Efficient Inhibition of Collagen-Induced Platelet Activation and Adhesion by LAIR-2, a Soluble Ig-Like Receptor Family Member

    Get PDF
    LAIR-1 (Leukocyte Associated Ig-like Receptor -1) is a collagen receptor that functions as an inhibitory receptor on immune cells. It has a soluble family member, LAIR-2, that also binds collagen and can interfere with LAIR-1/collagen interactions. Collagen is a main initiator for platelet adhesion and aggregation. Here, we explored the potential of soluble LAIR proteins to inhibit thrombus formation in vitro. LAIR-2/Fc but not LAIR-1/Fc inhibited collagen-induced platelet aggregation. In addition, LAIR-2/Fc also interfered with platelet adhesion to collagen at low shear rate (300 s−1; IC50 = 18 µg/ml) and high shear rate (1500 s−1; IC50 = 30 µg/ml). Additional experiments revealed that LAIR-2/Fc leaves interactions between collagen and α2β1 unaffected, but efficiently prevents binding of collagen to Glycoprotein VI and von Willebrand factor. Thus, LAIR-2/Fc has the capacity to interfere with platelet-collagen interactions mediated by Glycoprotein VI and the VWF/Glycoprotein Ib axis

    Inhibitory pattern recognition receptors

    Get PDF
    Pathogen- and damage-associated molecular patterns are sensed by the immune system's pattern recognition receptors (PRRs) upon contact with a microbe or damaged tissue. In situations such as contact with commensals or during physiological cell death, the immune system should not respond to these patterns. Hence, immune responses need to be context dependent, but it is not clear how context for molecular pattern recognition is provided. We discuss inhibitory receptors as potential counterparts to activating pattern recognition receptors. We propose a group of inhibitory pattern recognition receptors (iPRRs) that recognize endogenous and microbial patterns associated with danger, homeostasis, or both. We propose that recognition of molecular patterns by iPRRs provides context, helps mediate tolerance to microbes, and helps balance responses to danger signals

    Mice lacking the inhibitory collagen receptor LAIR-1 exhibit a mild thrombocytosis and hyperactive platelets

    Get PDF
    Objective— Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor that belongs to the inhibitory immunoreceptor tyrosine-based inhibition motif–containing receptor family. It is an inhibitor of signaling via the immunoreceptor tyrosine-based activation motif–containing collagen receptor complex, glycoprotein VI-FcRγ-chain. It is expressed on hematopoietic cells, including immature megakaryocytes, but is not detectable on platelets. Although the inhibitory function of LAIR-1 has been described in leukocytes, its physiological role in megakaryocytes and in particular in platelet formation has not been explored. In this study, we investigate the role of LAIR-1 in megakaryocyte development and platelet production by generating LAIR-1–deficient mice. Approach and Results— Mice lacking LAIR-1 exhibit a significant increase in platelet counts, a prolonged platelet half-life in vivo, and increased proplatelet formation in vitro. Interestingly, platelets from LAIR-1–deficient mice exhibit an enhanced reactivity to collagen and the glycoprotein VI–specific agonist collagen-related peptide despite not expressing LAIR-1, and mice showed enhanced thrombus formation in the carotid artery after ferric chloride injury. Targeted deletion of LAIR-1 in mice results in an increase in signaling downstream of the glycoprotein VI–FcRγ-chain and integrin αIIbβ3 in megakaryocytes because of enhanced Src family kinase activity. Conclusions— Findings from this study demonstrate that ablation of LAIR-1 in megakaryocytes leads to increased Src family kinase activity and downstream signaling in response to collagen that is transmitted to platelets, rendering them hyper-reactive specifically to agonists that signal through Syk tyrosine kinases, but not to G-protein–coupled receptors. </jats:sec

    VSTM1-v2 does not drive human Th17 cell differentiation: A replication study

    Get PDF
    Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human myeloid cells. We previously showed that dendritic cell (DC)-driven Th17 cell differentiation of human naive CD4+ T cells requires presence of neutrophils, which is inhibited by SIRL-1 ligation. VSTM1-v2 is a soluble isoform of SIRL-1, which was previously proposed to function as a Th17 polarizing cytokine. Here, we investigated the effect of VSTM1-v2 on DC-driven Th17 cell development. Neutrophils induced DC-driven Th17 cell differentiation, which was not enhanced by VSTM1-v2. Similarly, we found no effect of VSTM1-v2 on cytokine-driven Th17 cell development. Thus, our results do not support a role for VSTM1-v2 in Th17 cell differentiation

    Leukocyte Associated Immunoglobulin Like Receptor 1 Regulation and Function on Monocytes and Dendritic Cells During Inflammation

    Get PDF
    Inhibitory receptors are crucial immune regulators and are essential to prevent exacerbated responses, thus contributing to immune homeostasis. Leukocyte associated immunoglobulin like receptor 1 (LAIR-1) is an immune inhibitory receptor which has collagen and collagen domain containing proteins as ligands. LAIR-1 is broadly expressed on immune cells and has a large availability of ligands in both circulation and tissues, implicating a need for tight regulation of this interaction. In the current study, we sought to examine the regulation and function of LAIR-1 on monocyte, dendritic cell (DC) and macrophage subtypes, using different in vitro models. We found that LAIR-1 is highly expressed on intermediate monocytes as well as on plasmacytoid DCs. LAIR-1 is also expressed on skin immune cells, mainly on tissue CD14+ cells, macrophages and CD1c+ DCs. In vitro, monocyte and type-2 conventional DC stimulation leads to LAIR-1 upregulation, which may reflect the importance of LAIR-1 as negative regulator under inflammatory conditions. Indeed, we demonstrate that LAIR-1 ligation on monocytes inhibits toll like receptor (TLR)4 and Interferon (IFN)-α- induced signals. Furthermore, LAIR-1 is downregulated on GM-CSF and IFN-γ monocyte-derived macrophages and monocyte-derived DCs. In addition, LAIR-1 triggering during monocyte derived-DC differentiation results in significant phenotypic changes, as well as a different response to TLR4 and IFN-α stimulation. This indicates a role for LAIR-1 in skewing DC function, which impacts the cytokine expression profile of these cells. In conclusion, we demonstrate that LAIR-1 is consistently upregulated on monocytes and DC during the inflammatory phase of the immune response and tends to restore its expression during the resolution phase. Under inflammatory conditions, LAIR-1 has an inhibitory function, pointing toward to a potential intervention opportunity targeting LAIR-1 in inflammatory conditions

    NC410 is a novel immunomedicine for the treatment of solid tumors

    Get PDF
    Background Abnormalities in the extracellular matrix of tumor microenvironments support tumor progression, lead to immune dysfunction, and provide a target for cancer therapeutics. Collagens are a primary component of the extracellular matrix. Abnormal levels of collagen and of the collagen-domain containing complement component 1q (C1q) in tumor microenvironments has been proposed to disrupt anti-tumor immunity. LAIR-1 is an adhesion molecule and inhibitory receptor expressed on the cell surface of several immune cell subsets. LAIR-1 binding to collagen-like domains present in collagens and C1q inhibit immune cell function. LAIR-2 is a soluble homolog of LAIR-1 that binds to and outcompetes LAIR-1 binding to collagens and C1q and serves as a natural decoy to promote immune function.Methods Taking advantage of a natural decoy system, we designed a protein biologic, NC410, composed of LAIR-2 fused with a functional IgG1 Fc domain to target collagen-rich tumors and promote immune activation, infiltration and effector function.Results NC410 has increased avidity due to Fc mediated dimerization, and blocks LAIR-1 interactions with ligands, and LAIR-1 signaling. In vivo administration of NC410 in humanized tumor models reduced tumor growth in a dose dependent fashion. NC410 increased the numbers of infiltrating human CD8+ and CD4+ T cells in the tumor, which is associated with increased levels of chemokines in the local tumor environment. Effector function was also enhanced, as denoted by increased levels of IFN-gamma and Granzyme B in the local tumor environment. In addition, NC410 increased specific collagen degradative products in the serum of humanized tumor-bearing mice, suggesting NC410 may promote tumor microenvironment remodeling and immune accessibility to further promote anti-tumor immunity.Conclusions These data support NC410 as a novel therapeutic for targeting collagen-rich tumors and enabling normalization of the tumor-immune microenvironment. FIH studies have recently been initiated with NC410

    Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1

    Get PDF
    Collagens are the most abundant proteins in the human body, important in maintenance of tissue structure and hemostasis. Here we report that collagens are high affinity ligands for the broadly expressed inhibitory leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). The interaction is dependent on the conserved Gly-Pro-Hyp collagen repeats. Antibody cross-linking of LAIR-1 is known to inhibit immune cell function in vitro. We now show that collagens are functional ligands for LAIR-1 and directly inhibit immune cell activation in vitro. Thus far, all documented ligands for immune inhibitory receptors are membrane molecules, implying a regulatory role in cell–cell interaction. Our data reveal a novel mechanism of peripheral immune regulation by inhibitory immune receptors binding to extracellular matrix collagens

    Transcriptome of airway neutrophils reveals an interferon response in life-threatening respiratory syncytial virus infection

    Get PDF
    BACKGROUND: Neutrophils are the most abundant cell type infiltrating the airways during severe respiratory syncytial virus (RSV) infection. Their exact role in disease pathophysiology remains enigmatic. Therefore, we determined genome-wide RNA expression profiles of local and systemic neutrophils in RSV bronchiolitis to provide further insight into local neutrophil biology. METHODS: We performed a single-center analysis, in 16 infants, admitted to the pediatric intensive care unit with severe RSV bronchiolitis. Neutrophils were isolated from blood and tracheobronchial aspirates (sputum). After low input RNA sequencing, differential expression of genes was determined followed by gene set analysis. RESULTS: Paired transcriptomic analysis of airway versus blood neutrophils showed an inflammatory phenotype, characterized by NF-kB signaling and upregulated expression of IL-6 and interferon pathways. We observed distinct expression of neutrophil activation genes (TNFSF13B, FCER1G). DISCUSSION: Our data indicate that airway neutrophils regulate their function at the transcriptional level in response to viral infection. It also suggests that local interferon drives the neutrophil response of severe RSV bronchiolitis
    • …
    corecore