1,383 research outputs found

    Simple Non Linear Klein-Gordon Equations in 2 space dimensions, with long range scattering

    Full text link
    We establish that solutions, to the most simple NLKG equations in 2 space dimensions with mass resonance, exhibits long range scattering phenomena. Modified wave operators and solutions are constructed for these equations. We also show that the modified wave operators can be chosen such that they linearize the non-linear representation of the Poincar\'e group defined by the NLKG.Comment: 19 pages, LaTeX, To appear in Lett. Math. Phy

    Kinematic approach to the mixed state geometric phase in nonunitary evolution

    Full text link
    A kinematic approach to the geometric phase for mixed quantal states in nonunitary evolution is proposed. This phase is manifestly gauge invariant and can be experimentally tested in interferometry. It leads to well-known results when the evolution is unitary.Comment: Minor changes; journal reference adde

    Quantum decoherence in the theory of open systems

    Full text link
    In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We calculate also the decoherence time scale and analyze the transition from quantum to classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and Communication" (QPC 2005), Dubna, Russia, 200

    Quantum ratchets in dissipative chaotic systems

    Full text link
    Using the method of quantum trajectories we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for implementation of the quantum ratchet effect with cold atoms in optical lattices.Comment: Significant changes: Several text improvements and new results. Figure 2 modified. Figure 4 adde

    A spin foam model for general Lorentzian 4-geometries

    Full text link
    We derive simplicity constraints for the quantization of general Lorentzian 4-geometries. Our method is based on the correspondence between coherent states and classical bivectors and the minimization of associated uncertainties. For spacelike geometries, this scheme agrees with the master constraint method of the model by Engle, Pereira, Rovelli and Livine (EPRL). When it is applied to general Lorentzian geometries, we obtain new constraints that include the EPRL constraints as a special case. They imply a discrete area spectrum for both spacelike and timelike surfaces. We use these constraints to define a spin foam model for general Lorentzian 4-geometries.Comment: 27 pages, 1 figure; v4: published versio

    Quantum bath refrigeration towards absolute zero: unattainability principle challenged

    Full text link
    A minimal model of a quantum refrigerator (QR), i.e. a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards the absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T->0 for certain realistic quantized baths, e.g. phonons in strongly disordered media (fractons) or quantized spin-waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle

    Classical, quantum and total correlations

    Get PDF
    We discuss the problem of separating consistently the total correlations in a bipartite quantum state into a quantum and a purely classical part. A measure of classical correlations is proposed and its properties are explored.Comment: 10 pages, 3 figure

    A Variation in the Cerebroside Sulfotransferase Gene is Linked to Exercise-Modified Insulin Resistance and to Type 2 Diabetes

    Get PDF
    Aims. The glycosphingolipid β-galactosylceramide-3-O-sulfate (sulfatide) is present in the secretory granules of the insulin producing β-cells and may act as a molecular chaperone of insulin. The final step in sulfatide synthesis is performed by cerebroside sulfotransferase (CST) (EC 2.8.2.11). The aim of this study was to investigate whether two single nucleotide polymorphisms (SNP), rs2267161 located in an exon or rs42929 located in an intron, in the gene encoding CST are linked to type 2 diabetes (T2D). Methods. As a population survey, 265 male and female patients suffering from T2D and 291 gender matched controls were examined. Results. A higher proportion of T2D patients were heterozygous at SNP rs2267161 with both T (methionine) and C (valine) alleles present (49.8% versus 41.3%, P = .04). The calculated odd risk for T2D was 1.47 (1.01–2.15, P = .047). Among female controls, the homozygous CC individuals displayed lower insulin resistance measured by HOMA-IR (P = .05) than the C/T or TT persons; this was particularly prevalent in individuals who exercise (P = .03). Conclusion. Heterozygosity at SNP rs2267161 in the gene encoding the CST enzyme confers increased risk of T2D. Females with the CC allele showed lower insulin resistance

    A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields

    Get PDF
    The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a fundamental aspect of the Hubble galaxy classification system. This ``tuning fork'' view was revised by de Vaucouleurs, whose classification volume recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of galaxies called the ``family''. However, the SA, SAB, and SB families are purely visual judgments that can have little bearing on the actual bar strength in a given galaxy. Until very recently, published bar judgments were based exclusively on blue light images, where internal extinction or star formation can either mask a bar completely or give the false impression of a bar in a nonbarred galaxy. Near-infrared camera arrays, which principally trace the old stellar populations in both normal and barred galaxies, now facilitate a quantification of bar strength in terms of their gravitational potentials and force fields. In this paper, we show that the maximum value, Qb, of the ratio of the tangential force to the mean radial force is a quantitative measure of the strength of a bar. Qb does not measure bar ellipticity or bar shape, but rather depends on the actual forcing due to the bar embedded in its disk. We show that a wide range of true bar strengths characterizes the category ``SB'', while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30 pages + 3 figures); Figs. 1 and 3 are in color and are also available at http://bama.ua.edu/~rbuta/bars

    Test Particle in a Quantum Gas

    Get PDF
    A master equation with a Lindblad structure is derived, which describes the interaction of a test particle with a macroscopic system and is expressed in terms of the operator valued dynamic structure factor of the system. In the case of a free Fermi or Bose gas the result is evaluated in the Brownian limit, thus obtaining a single generator master equation for the description of quantum Brownian motion in which the correction due to quantum statistics is explicitly calculated. The friction coefficients for Boltzmann and Bose or Fermi statistics are compared.Comment: 9 pages, revtex, no figure
    corecore