20 research outputs found

    Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state

    Get PDF
    Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the in vivo analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory/protective state of microglia for the development of novel PET tracers.Methods: New translational markers of the anti-inflammatory/protective activation state of microglia were selected by bioinformatic approaches and were in vitro and ex vivo validated by qPCR and immunohistochemistry in rodent and human samples. Once a viable marker was identified, a novel PET tracer was developed. This tracer was subsequently confirmed by autoradiography experiments in murine and human brain tissues.Results: Here we provide evidence that P2RYI2 expression increases in murine and human microglia following exposure to anti-inflammatory stimuli, and that its expression is modulated in the reparative phase of experimental and clinical stroke. We then synthesized a novel carbon-II labeled tracer targeting P2RYI2, showing increased binding in brain sections of mice treated with IL4, and low binding to brain sections of a murine stroke model and of a stroke patient.Conclusion: This study provides new translational targets for PET tracers for the anti-inflammatory/protective activation state of microglia and shows the potential of a rationale-based approach. It therefore paves the way for the development of novel non-invasive methodologies aimed to monitor the success of therapeutic approaches in various neurological diseases.</div

    Detection of pro-inflammatory ion channel activity in human microglia, the brain macrophages.

    No full text
    A research group at Saniona A/S has established a method for studying functional ion channel expression and activity in human microglia, the macrophages of the brain, isolated from epilepsy patients. Various ion channels on microglia cells are thought to promote or dampen inflammation in the brain, and inhibiting or facilitating these ion channels by pharmacological means could serve as a novel handle to treat inflammatory diseases. Through an extensive collaboration between Saniona A/S, the Neurobiology Research Unit at the Copenhagen University Hospital (Rigshospitalet) and the EU consortium INMiND (HEALTH-F2-2011-278850), we have been able to study the functional expression of several ion channels in microglia derived from adult human CNS tissue. The new findings that these channels are in fact functionally expressed in human microglia is of crucial importance in order to enhance successful translation of previous findings in animal experiments to humans

    Potassium channel expression and function in microglia: plasticity and possible species variations

    No full text
    Potassium channels play important roles in microglia functions and thus constitute potential targets for the treatment of neurodegenerative diseases like Alzheimer, Parkinson and stroke. However, uncertainty still prevails as to which potassium channels are expressed and at what levels in different species, how the expression pattern changes upon activation with M1 or M2 polarizing stimuli compared with more complex exposure paradigms, and - most importantly - how these findings relate to the in vivo situation. In this mini-review we discuss the functional potassium channel expression pattern in cultured neonatal mouse microglia in the light of data obtained previously from animal disease models and immunohistochemical studies and compare it with a recent study of adult human microglia isolated from epilepsy patients. Overall, microglial potassium channel expression is very plastic and possibly shows species differences and therefore should be studied carefully in each disease setting and respective animal models

    Efficient enzymatic ligation of inhibitor cystine knot spider venom peptides: using sortase a to form double-knottins that probe voltage-gated sodium channel NaV1.7

    No full text
    Gating modifier toxins from spider venom are disulfide-rich peptides that typically comprise a stabilizing inhibitor cystine knot (ICK). These knottin peptides are being pursued as therapeutic leads for a range of conditions linked to transmembrane proteins. Recently, double-knottin peptides discovered in spider venom and produced by recombinant expression have provided insights into the pharmacology of transmembrane channels. Here, we use chemoenzymatic ligation to produce double-knottins to probe the effect of bivalent modulation on the voltage-gated sodium channel subtype 1.7 (Na1.7), which is implicated in pain signaling. Monovalent knottins were oxidatively folded and then biochemically conjugated using sortase A, to form double-knottins. The structural integrity of the peptides was confirmed using NMR, and fluorescence-based activity assays provided evidence suggesting that coincubated monovalent and bivalent knottins can cooperatively modulate Na1.7. We anticipate that double-knottins will provide novel tools for enhancing our understanding of, and design strategies for, therapeutically relevant voltage-gated ion channels

    Mobilisation of the splenic monocyte reservoir and peripheral CX(3)CR1 deficiency adversely affects recovery from spinal cord injury

    No full text
    Macrophages in the injured spinal cord originate from resident microglia and blood monocytes. Whether this diversity in origins contributes to their seemingly dual role in immunopathology and repair processes has remained poorly understood. Here we took advantage of Cx(3)cr1(gfp) mice to visualise monocyte-derived macrophages in the injured spinal cord via adoptive cell transfer and bone marrow (BM) chimera approaches. We show that the majority of infiltrating monocytes at 7 days post-injury originate from the spleen and only to a lesser extent from the BM. Prevention of early monocyte infiltration via splenectomy was associated with improved recovery at 42 days post-SCI. In addition, an increased early presence of infiltrating monocytes/macrophages, as a result of CX(3)CR1 deficiency within the peripheral immune compartment, correlated with worsened injury outcomes. Adoptive transfer of identified Cx(3)cr1(gfp/+) monocytes confirmed peak infiltration at 7 days post-injury, with inflammatory (Ly6C(high)) monocytes being most efficiently recruited: Focal SCI also changed the composition of the two major monocyte subsets in the blood, with more Ly6C(high) cells present during peak recruitment. Adoptive transfer experiments further suggested high turnover of inflammatory monocytes in the spinal cord at 7 days post-injury. Consistent with this, only a small proportion of infiltrating cells unequivocally expressed polarisation markers for pro-inflammatory (M1) or alternatively activated (M2) macrophages at this time point. Our findings offer new insights into the origins of monocyte-derived macrophages after SCI and their contribution to functional recovery, providing a basis for further scrutiny and selective targeting of Ly6C(high) monocytes to improve outcomes from neurotraumatic events. (C) 2013 Elsevier Inc. All rights reserved
    corecore