21 research outputs found

    Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor-predominant splice isoforms were identified during comparative <it>in silico </it>sequence analysis of EST clones, suggesting that global aberrant alternative pre-mRNA splicing may be an epigenetic phenomenon in cancer. We used an exon expression array to perform an objective, genome-wide survey of glioma-specific splicing in 24 GBM and 12 nontumor brain samples. Validation studies were performed using RT-PCR on glioma cell lines, patient tumor and nontumor brain samples.</p> <p>Results</p> <p>In total, we confirmed 14 genes with glioma-specific splicing; seven were novel events identified by the exon expression array (<it>A2BP1, BCAS1, CACNA1G, CLTA, KCNC2, SNCB</it>, and <it>TPD52L2</it>). Our data indicate that large changes (> 5-fold) in alternative splicing are infrequent in gliomagenesis (< 3% of interrogated RefSeq entries). The lack of splicing changes may derive from the small number of splicing factors observed to be aberrantly expressed.</p> <p>Conclusion</p> <p>While we observed some tumor-specific alternative splicing, the number of genes showing exclusive tumor-specific isoforms was on the order of tens, rather than the hundreds suggested previously by <it>in silico </it>mining. Given the important role of alternative splicing in neural differentiation, there may be selective pressure to maintain a majority of splicing events in order to retain glial-like characteristics of the tumor cells.</p

    Methylation of the candidate biomarker TCF21 is very frequent across a spectrum of early-stage nonsmall cell lung cancers

    Get PDF
    The transcription factor TCF21 is involved in mesenchymal-to-epithelial differentiation and was shown to be aberrantly hypermethylated in lung and head and neck cancers. Because of its reported high frequency of hypermethylation in lung cancer, we sought to characterize the stages and types of non-small cell lung cancer (NSCLC) that are hypermethylated and to define the frequency of hypermethylation and associated “second hits”

    Effects of MDM2, MDM4 and TP53 Codon 72 Polymorphisms on Cancer Risk in a Cohort Study of Carriers of TP53 Germline Mutations

    Get PDF
    Previous studies have shown that MDM2 SNP309 and p53 codon 72 have modifier effects on germline P53 mutations, but those studies relied on case-only studies with small sample sizes. The impact of MDM4 polymorphism on tumor onset in germline mutation carriers has not previously been studied.We analyzed 213 p53 germline mutation carriers including 168(78.9%) affected with cancer and 174 who had genotypic data. We analyzed time to first cancer using Kaplan-Meier and Cox proportional hazards methods, comparing risks according to polymorphism genotypes. For MDM2 SNP309, a significant difference of 9.0 years in the average age of cancer diagnosis was observed between GG/GT and TT carriers (18.6 versus 27.6 years, P = 0.0087). The hazards ratio was 1.58 (P = 0.03) comparing risks among individuals with GG/GT to risk among TT, but this effect was only significant in females (HR = 1.60, P = 0.02). Compared to other genotypes, P53 codon 72 PP homozygotes had a 2.24 times (P = 0.03) higher rate for time to develop cancer. We observed a multiplicative joint effect of MDM2 and p53 codon72 polymorphism on risk. The MDM4 polymorphism had no significant effects.Our results suggest that the MDM2 SNP309 G allele is associated with cancer risk in p53 germline mutation carriers and accelerates time to cancer onset with a pronounced effect in females. A multiplicative joint effect exists between the MDM2 SNP309 G allele and the p53 codon 72 G allele in the risk of cancer development. Our results further define cancer risk in carriers of germline p53 mutations

    Molecular signatures of metastasis in head and neck cancer

    No full text
    Background: Metastases are the primary cause of cancer treatment failure and death, yet metastatic mechanisms remain incompletely understood. Methods: We studied the molecular basis of head and neck cancer metastasis by transcriptionally profiling 70 samples from 27 patients-matching normal adjacent tissue, primary tumor, and cervical lymph node metastases. Results: We identified tumor-associated expression signatures common to both primary tumors and metastases. Use of matching metastases revealed an additional 46 dysregulated genes associated solely with head and neck cancer metastasis. However, despite being metastasis-specific in our sample set, these 46 genes are concordant with genes previously discovered in primary tumors that metastasized. Conclusions: Although our data and related studies show that most of the metastatic potential appears to be inherent to the primary tumor, they are also consistent with the notion that a limited number of additional clonal changes are necessary to yield the final metastatic cell(s), albeit in a variable temporal order

    Mutant (CCTG)n Expansion Causes Abnormal Expression of Zinc Finger Protein 9 (ZNF9) in Myotonic Dystrophy Type 2

    No full text
    The mutation that underlies myotonic dystrophy type 2 (DM2) is a (CCTG)n expansion in intron 1 of zinc finger protein 9 (ZNF9). It has been suggested that ZNF9 is of no consequence for disease pathogenesis. We determined the expression levels of ZNF9 during muscle cell differentiation and in DM2 muscle by microarray profiling, real-time RT-PCR, splice variant analysis, immunofluorescence, and Western blotting. Our results show that in differentiating myoblasts, ZNF9 protein was localized primarily to the nucleus, whereas in mature muscle fibers, it was cytoplasmic and organized in sarcomeric striations at the Z-disk. In patients with DM2, ZNF9 was abnormally expressed. First, there was an overall reduction in both the mRNA and protein levels. Second, the subcellular localization of the ZNF9 protein was somewhat less cytoplasmic and more membrane-bound. Third, our splice variant analysis revealed retention of intron 3 in an aberrant isoform, and fourth quantitative allele-specific expression analysis showed the persistence of intron 1 sequences from the abnormal allele, further suggesting that the mutant allele is incompletely spliced. Thus, the decrease in total expression appears to be due to impaired splicing of the mutant transcript. Our data indicate that ZNF9 expression in DM2 patients is altered at multiple levels. Although toxic RNA effects likely explain overlapping phenotypic manifestations between DM1 and DM2, abnormal ZNF9 levels in DM2 may account for the differences in DM1

    Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays-0

    No full text
    Plot showing the average of three independent experiments for U251 glioblastoma cells in which exon 3 splicing was changed using targeted antisense morpholino oligonucleotide-treatment. The positions of five RefSeq entries representing are indicated. The inset shows representative RT-PCR results for exon 3 splicing following treatment with the control (MO-C) or antisense (MO-T) oligonucleotide. For data on RefSeq entries with significant values see Additional file . (B) Plot showing the genome-wide changes in expression and splicing observed in GBM compared to nontumor brain. For each Ref Seq entry, the values are derived from 24 GBM samples minus 12 nontumor brain samples. Notable RefSeq entries are labeled with their gene names. For data on RefSeq entries with significant values see Additional file . The theoretical values for a 5-fold (dashed line) and 10-fold (dotted line) change in exon inclusion are shown. For hybridization intensity maps of the highlighted genes see Additional file .<p><b>Copyright information:</b></p><p>Taken from "Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays"</p><p>http://www.biomedcentral.com/1471-2164/9/216</p><p>BMC Genomics 2008;9():216-216.</p><p>Published online 12 May 2008</p><p>PMCID:PMC2410136.</p><p></p
    corecore