3 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Hyperacute changes in blood mRNA expression profiles of rats after middle cerebral artery occlusion: Towards a stroke time signature.

    Get PDF
    Stroke evolution is a highly dynamic but variable disease which makes clinical decision making difficult. Biomarker discovery programs intended to aid clinical decision making have however largely ignored the rapidity of stroke evolution. We have used gene array technology to determine blood mRNA expression changes over the first day after stroke in rats. Blood samples were collected from 8 male spontaneously hypertensive rats at 0, 1, 2, 3, 6 and 24h post stroke induction by middle cerebral artery occlusion. RNA was extracted from whole blood stabilized in PAXgene tubes and mRNA expression was detected by oligonucleotide Affymetrix microarray. Using a pairwise comparison model, 1932 genes were identified to vary significantly over time (p≤0.5x10(-7)) within 24h after stroke. Some of the top20 most changed genes are already known to be relevant to the ischemic stroke physiopathology (e.g. Il-1R, Nos2, Prok2). Cluster analysis showed multiple stereotyped and time dependent profiles of gene expression. Direction and rate of change of expression for some profiles varied dramatically during these 24h. Profiles with potential clinical utility including hyper acute or acute transient upregulation (with expression peaking from 2 to 6h after stroke and normalisation by 24h) were identified. We found that blood gene expression varies rapidly and stereotypically after stroke in rats. Previous researchers have often missed the optimum time for biomarker measurement. Temporally overlapping profiles have the potential to provide a biological "stroke clock" able to tell the clinician how far an individual stroke has evolved

    Appendix: South Africa

    No full text
    corecore