9 research outputs found

    Identification and inhibition of carbonic anhydrases from nematodes.

    Get PDF
    Carbonic anhydrases (CAs) are metalloenzymes, and classified into the evolutionarily distinct α, β, γ, δ, ζ, and η classes. α-CAs are present in many living organisms. β- and γ-CAs are expressed in most prokaryotes and eukaryotes, except for vertebrates. δ- and ζ-CAs are present in phytoplanktons, and η-CAs have been found in Plasmodium spp. Since the identification of α- and β-CAs in Caenorhabditis elegans, the nematode CAs have been considered as an emerging target in research focused on antiparasitic CA inhibitors. Despite the presence of α-CAs in both helminths and vertebrates, structural studies have revealed different kinetic and inhibition results. Moreover, lack of β-CAs in vertebrates makes this enzyme as an attractive target for inhibitory studies against helminthic infection. Some CA inhibitors, such as sulfonamides, have been evaluated against nematode CAs. This review article aims to present comprehensive information about the nematode CAs and their inhibitors as potential anthelminthic drugs

    Activation studies with amino acids and amines of a β-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri previously annotated as Staphylococcus aureus (SauBCA) carbonic anhydrase

    Get PDF
    A β-carbonic anhydrase (CA, EC 4.2.1.1) previously annotated to be present in the genome of Staphylococcus aureus, SauBCA, has been shown to belong to another pathogenic bacterium, Mammaliicoccus (Staphylococcus) sciuri. This enzyme, MscCA, has been investigated for its activation with a series of natural and synthetic amino acid and amines, comparing the results with those obtained for the ortholog enzyme from Escherichia coli, EcoCAβ. The best MscCA activators were D-His, L- and D-DOPA, 4-(2-aminoethyl)-morpholine and L-Asn, which showed KAs of 0.12 − 0.89 µM. The least efficient activators were D-Tyr and L-Gln (KAs of 13.9 − 28.6 µM). The enzyme was also also inhibited by anions and sulphonamides, as described earlier. Endogenous CA activators may play a role in bacterial virulence and colonisation of the host which makes this research topic of great interest.publishedVersionPeer reviewe

    Inhibition of the newly discovered β‑carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules

    Get PDF
    The protozoan pathogen Trichomonas vaginalis encodes two carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the β-class. One of these enzymes, T. vaginalis carbonic anhydrase 1 (TvaCA1), was recently cloned and characterized by our group, and its X-ray crystal structure reported. No inhibitors of this enzyme were reported up until now. Here we investigated the inhibition of TvaCA1 with inorganic anions and small molecules and observed that thiocyanate, cyanide, selenite, selenocyanate and divanadate are sub-millimolar inhibitors, whereas sulfamide, sulfate, phenylboronic acid and phenylarsonic acid are micromolar inhibitors. Finding effective TvaCA1 inhibitors may be useful for developing new antiprotozoan drugs.acceptedVersionPeer reviewe

    Activation of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with amines and amino acids

    Get PDF
    We report the first activation study of the β-class carbonic anhydrase (CA, EC 4.2.1.1) encoded in the genome of the protozoan pathogen Trichomonas vaginalis, TvaCA1. Among 24 amino acid and amine activators investigated, derivatives incorporating a second carboxylic moiety, such as L-Asp, L- and D-Glu, were devoid of activating effects up to concentrations of 50 µM within the assay system, whereas the corresponding compounds with a CONH2 moiety, i.e. L-Gln and L-Asn showed modest activating effects, with activation constants in the range of 26.9 − 32.5 µM. Moderate activation was observed with L- and D-DOPA, histamine, dopamine, serotonin, (2-Aminoethyl)pyridine/piperazine and morpholine (KA‘s ranging between 8.3 and 14.5 µM), while the best activators were L-and D-Trp, L-and D-Tyr and 4-amino-Phe, which showed KA‘s ranging between 3.0 and 5.1 µM. Understanding in detail the activation mechanism of β-CAs may be relevant for the design of enzyme activity modulators with potential clinical significance.publishedVersionPeer reviewe

    Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides

    Get PDF
    Sulphonamides and their isosteres are classical inhibitors of the carbonic anhydrase (CAs, EC 4.2.1.1) metalloenzymes. The protozoan pathogen Trichomonas vaginalis encodes two such enzymes belonging to the β-class, TvaCA1 and TvaCA2. Here we report the first sulphonamide inhibition study of TvaCA1, with a series of simple aromatic/heterocyclic primary sulphonamides as well as with clinically approved/investigational drugs for a range of pathologies (diuretics, antiglaucoma, antiepileptic, antiobesity, and antitumor drugs). TvaCA1 was effectively inhibited by acetazolamide and ethoxzolamide, with KIs of 391 and 283 nM, respectively, whereas many other simple or clinically used sulphonamides were micromolar inhibitors or did not efficiently inhibit the enzyme. Finding more effective TvaCA1 inhibitors may constitute an innovative approach for fighting trichomoniasis, a sexually transmitted infection, caused by T. vaginalis.publishedVersionPeer reviewe

    Biochemical and structural characterization of beta-carbonic anhydrase from the parasite Trichomonas vaginalis

    Get PDF
    Abstract: Trichomonas vaginalis is a unicellular parasite and responsible for one of the most common sexually transmittable infections worldwide, trichomoniasis. Carbonic anhydrases (CAs) are enzymes found in all lifeforms and are known to play a vital role in many biochemical processes in organisms including the maintenance of acid–base homeostasis. To date, eight evolutionarily divergent but functionally convergent forms of CAs (α, β, γ, δ, ζ, η, θ, and ι) have been discovered. The human genome contains only α-CAs, whereas many clinically significant pathogens express only β-CAs and/or γ-CAs. The characterization of pathogenic β- and γ-CAs provides important knowledge for targeting these biomolecules to develop novel anti-invectives against trichomoniasis. Here, we report the recombinant production and characterization of the second β-CA of T. vaginalis (TvaCA2). Light scattering analysis revealed that TvaCA2 is a dimeric protein, which was further supported with in silico modeling, suggesting similar structures between TvaCA2 and the first β-CA of T. vaginalis (TvaCA1). TvaCA2 exhibited moderate catalytic activity with the following kinetic parameters: kcat of 3.8 × 105 s−1 and kcat/KM of 4.4 × 107 M−1 s−1. Enzyme activity inhibition was studied with a set of clinically used sulfonamides and sulfonamide derivates. Twenty-seven out of the 39 compounds resulted in inhibition with a nanomolar range. These initial results encourage for future work entailing the design of more potent inhibitors against TvaCA2, which may provide new assets to fight trichomoniasis. Key messages: • Protozoan parasite Trichomonas vaginalis has two β-carbonic anhydrases (TvaCA1/2). • TvaCA1/TvaCA2 represents promising targets for antitrichomonal drug development. • TvaCA2 is a dimer of 20.3 kDa and possesses moderate catalytic activity. • The most efficient inhibitor was clinical drug acetazolamide with KI of 222.9 nM. • The 39 tested sulfonamides form the basis for the design of more potent inhibitors.publishedVersionPeer reviewe

    The production and biochemical characterization of α-carbonic anhydrase from Lactobacillus rhamnosus GG

    Get PDF
    Abstract: We report the production and biochemical characterization of an α-carbonic anhydrase (LrhCA) from gram-positive probiotic bacteria Lactobacillus rhamnosus GG. CAs form a family of metalloenzymes that catalyze hydration of CO2/interconversion between CO2 and water to bicarbonate ions and protons. They are divided into eight independent gene families (α, β, γ, δ, ζ, η, θ, and ι). Interestingly, many pathogens have been identified with only β- and/or γ-CAs, which can be targeted with CA-specific inhibitors (CAIs) acting as anti-pathogen drugs. Since it is important to study the potential off-target effects of CAIs for both the human body and its commensal bacteria, we took L. rhamnosus GG as our study subject. To date, only a single α-CA has been identified in L. rhamnosus GG, which was successfully produced and biochemically characterized. LrhCA showed moderate catalytic activity with the following kinetic parameters: kcat of 9.86 × 105 s−1 and kcat/KM of 1.41 × 107 s−1 M−1. Moderate inhibition was established with 11 of the 39 studied sulfonamides. The best inhibitors were 5-((4-aminophenyl)sulfonamido)-1,3,4-thiadiazole-2-sulfonamide, 4-(2-hydroxymethyl-4-nitrophenyl-sulfonamidoethyl)-benzenesulfonamide, and benzolamide with Ki values of 319 nM, 378 nM, and 387 nM, respectively. The other compounds showed weaker inhibitory effects. The Ki of acetazolamide, a classical CAI, was 733 nM. In vitro experiments with acetazolamide showed that it had no significant effect on cell growth in L. rhamnosus GG culture. Several sulfonamides, including acetazolamide, are in use as clinical drugs, making their inhibition data highly relevant to avoid any adverse off-target effects towards the human body and its probiotic organisms. Key points: • The α-carbonic anhydrase from Lactobacillus rhamnosus GG (LrhCA) is 24.3 kDa. • LrhCA has significant catalytic activity with a kcat of 9.9 × 105 s-1. • Acetazolamide resulted in a marginal inhibitory effect on cell growth.Peer reviewe

    Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from Trichomonas vaginalis

    No full text
    We report the biochemical and structural characterisation of a beta-carbonic anhydrase (β-CA) from Trichomonas vaginalis, a unicellular parasite responsible for one of the world’s leading sexually transmitted infections, trichomoniasis. CAs are ubiquitous metalloenzymes belonging to eight evolutionarily divergent groups (α, β, γ, δ, ζ, η, θ, and ι); humans express only α-CAs, whereas many clinically significant pathogens express only β- and/or γ-CAs. For this reason, the latter two groups of CAs are promising biomedical targets for novel antiinfective agents. The β-CA from T. vaginalis (TvaCA1) was recombinantly produced and biochemically characterised. The crystal structure was determined, revealing the canonical dimeric fold of β-CAs and the main features of the enzyme active site. The comparison with the active site of human CA enzymes revealed significant differences that can be exploited for the design of inhibitors selective for the protozoan enzyme with respect to the human ones
    corecore