13 research outputs found

    Technical Consultation of the International Space Station (ISS) Internal Active Thermal Control System (IATCS) Cooling Water Chemistry

    Get PDF
    The Internal Active Thermal Control System (IATCS) coolant exhibited unexpected chemical changes during the first year of on-orbit operation following the launch and activation in February 2001. The coolant pH dropped from 9.3 to below the minimum specification limit of 9.0, and re-equilibrated between 8.3 and 8.5. This drop in coolant pH was shown to be the result of permeation of CO2 from the cabin into the coolant via Teflon flexible hoses which created carbonic acid in the fluid. This unexpected diffusion was the result of having a cabin CO2 partial pressure higher than the ground partial pressure (average 4.0 mmHg vs. less than 0.2 mmHg). This drop in pH was followed by a concurrent increasing coolant nickel concentration. No other metal ions were observed in the coolant and based on previous tests, the source of nickel ion was thought to be the boron nickel (BNi) braze intermetallics used in the construction of HXs and cold plates. Specifically, BNi2 braze alloy was used for the IATCS IFHX and BNi3 braze alloy was used for the IATCS Airlock Servicing and Performance Checkout Unit (SPCU) HX and cold plates. Given the failure criticality of the HXs, a Corrosion Team was established by the IATCS CWG to determine the impact of the nickel corrosion on hardware performance life

    Effective Application of Solid Lubricants in Spacecraft Mechanisms

    No full text
    Solid lubricants, antiwear coatings, and self-lubricating composites are used in applications on spacecraft where oils and greases cannot be used because of the need to avoid lubricant volatility/migration, and where the application requires significant temperature variation, accelerated testing, higher electrical conductivity, or operation in boundary conditions. The purpose of this review is to provide spacecraft designers with tools that can aid in the effective use of solid-based tribological materials, both to increase their usage, and to reduce anomalies. The various tribological material formulations are described, including how their materials, physical, and chemical properties affect their performance. Included are typical solid lubricants like PTFE and bonded or sputter-deposited MoS2, as well as low shear metal coatings, hard coatings, and composite materials (including bulk composites and nanocomposite coatings). Guidance is given on how to develop mechanisms that meet performance requirements, but also how to optimize robustness, so that success is achieved even under unforeseen circumstances. Examples of successful applications are given, as well as how to avoid potential pitfalls, and what the future of solid tribological materials may hold

    Crystallinity of rf-sputtered MoS 2

    No full text

    The growth of AuGa 2

    No full text

    The Complete Genome Sequence of Roseobacter denitrificans Reveals a Mixotrophic Rather than Photosynthetic Metabolism

    No full text
    Purple aerobic anoxygenic phototrophs (AAPs) are the only organisms known to capture light energy to enhance growth only in the presence of oxygen but do not produce oxygen. The highly adaptive AAPs compose more than 10% of the microbial community in some euphotic upper ocean waters and are potentially major contributors to the fixation of the greenhouse gas CO(2). We present the complete genomic sequence and feature analysis of the AAP Roseobacter denitrificans, which reveal clues to its physiology. The genome lacks genes that code for known photosynthetic carbon fixation pathways, and most notably missing are genes for the Calvin cycle enzymes ribulose bisphosphate carboxylase (RuBisCO) and phosphoribulokinase. Phylogenetic evidence implies that this absence could be due to a gene loss from a RuBisCO-containing α-proteobacterial ancestor. We describe the potential importance of mixotrophic rather than autotrophic CO(2) fixation pathways in these organisms and suggest that these pathways function to fix CO(2) for the formation of cellular components but do not permit autotrophic growth. While some genes that code for the redox-dependent regulation of photosynthetic machinery are present, many light sensors and transcriptional regulatory motifs found in purple photosynthetic bacteria are absent
    corecore