2 research outputs found

    Scaffold design for artificial tissue with bone marrow stem cells

    No full text
    Objective: The aim of this study was to test polymeric materials (collagen, fibrin, polyimide film, and polylactic acid) for single- and multi-layer scaffold formation. Materials and methods: In our study, we used rabbit bone marrow stem cells (rBMSCs) and human mesenchymal stem cells (hMSCs) with materials of a different origin for the formation of an artificial scaffold, such as a collagen scaffold, fibrin scaffold produced from clotted rabbit plasma, electrospun poly(lactic acid) (PLA) mats, polyimide film (PI), and the combination of the latter two. Cell imaging was performed 3–14 days after cell cultivation in the scaffolds. Time-lapse imaging was used to determine hMSC mobility on the PI film. Results: Cell incorporation in collagen and clotted fibrin scaffolds was evaluated after 2-week cultivation in vitro. Histological analysis showed that cells penetrated only external layers of the collagen scaffold, while the fibrin clot was populated with rBMSCs through the entire scaffold thickness. As well, cell behavior on the laser micro-structured PI film was analyzed. The mobility of hMSCs on the smooth PI film and the micro-machined surface was 20 ± 2 μmm/h and 18 ± 4 μmm/h, respectively. After 3-day cultivation, hMSCs were capable of spreading through the whole 100 ± 10 μmm-thick layer of the electrospun PLA scaffold and demonstrated that the multilayer scaffold composed of PI and PLA materials ensured a suitable environment for cell growth. Conclusions: The obtained results suggest that electrospinning technology and femtosecond laser micro-structuring could be employed for the development of multi-layer scaffolds. Different biopolymers, such as PLA, fibrin, and collagen, could be used as appropriate environments for cell inhabitation and as an inner layer of the multi-layer scaffold. PI could be suitable as a barrier blocking cell migration from the scaffold. However, additional studies are needed to determine optimal parameters of inner and outer scaffold layers

    Femtosecond laser micro-machined polyimide films for cell scaffold applications

    No full text
    2016 Dec 11. [Epub ahead of print]Engineering of sophisticated synthetic 3D scaffolds that allow controlling behavior and location of the cells requires advanced micro/nano fabrication techniques. Ultrafast laser micro-machining employing a 1030 nm wavelength Yb:KGW femtosecond laser and a micro-fabrication workstation for micro-machining of commercially available 12.7 and 25.4 µm thickness polyimide (PI) film was applied. Mechanical properties of the fabricated scaffolds, i.e., arrays of differently spaced holes, were examined via custom-built uniaxial micro-tensile testing and finite element method simulations. We demonstrate that experimental micro-tensile testing results could be numerically simulated and explained by 2-material model, assuming that 2-6 µm width rings around the holes possessed up to 5 times higher Young's modulus and yield stress compared with the rest of the laser intacted PI film areas of "dog-bone" shaped specimens. That was attributed to material modification around the micro-machined holes in the vicinity of the position of the focused laser beam track during trepanning drilling. We demonstrate that virgin PI films provide a suitable environment for the mobility, proliferation, and intercellular communication of human bone marrow mesenchymal stem cells and discuss how cell behavior varies on the micro-machined PI films with holes of different diameters (3.1, 8.4, and 16.7 µm) and hole spacing (30, 35, 40, and 45 µm). We conclude that the holes of 3.1 µm diameter were sufficient for metabolic and genetic communication through membranous tunneling tubes between cells residing on the opposite sides of PI film but prevented the trans-migration of cells through the holesKauno technologijos universitetasLietuvos sveikatos mokslų universitetas. Medicinos akademija. Fiziologijos ir farmakologijos institutasLietuvos sveikatos mokslų universitetas. Medicinos akademija. Kardiologijos instituta
    corecore