5,470 research outputs found
Low-frequency QPO from the 11 Hz accreting pulsar in Terzan 5: not frame dragging
We report on 6 RXTE observations taken during the 2010 outburst of the 11 Hz
accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5.
During these observations we find power spectra which resemble those seen in
Z-type high-luminosity neutron star low-mass X-ray binaries, with a
quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz
QPO and broad band noise. Using well known frequency-frequency correlations, we
identify the 35-50 Hz QPOs as the horizontal branch oscillations (HBO), which
were previously suggested to be due to Lense-Thirring precession. As IGR
J17480-2446 spins more than an order of magnitude more slowly than any of the
other neutron stars where these QPOs were found, this QPO can not be explained
by frame dragging. By extension, this casts doubt on the Lense-Thirring
precession model for other low-frequency QPOs in neutron-star and perhaps even
black-hole systems.Comment: 6 pages, 5 figures, Accepted for publication in ApJ
Live Demonstration: Multiplexing AER Asynchronous Channels over LVDS Links with Flow-Control and Clock- Correction for Scalable Neuromorphic Systems
In this live demonstration we exploit the use of a
serial link for fast asynchronous communication in massively
parallel processing platforms connected to a DVS for realtime
implementation of bio-inspired vision processing on
spiking neural networks
Entropy-driven phase transition in a system of long rods on a square lattice
The isotropic-nematic (I-N) phase transition in a system of long straight
rigid rods of length k on square lattices is studied by combining Monte Carlo
simulations and theoretical analysis. The process is analyzed by comparing the
configurational entropy of the system with the corresponding to a fully aligned
system, whose calculation reduces to the 1D case. The results obtained (1)
allow to estimate the minimum value of k which leads to the formation of a
nematic phase and provide an interesting interpretation of this critical value;
(2) provide numerical evidence on the existence of a second phase transition
(from a nematic to a non-nematic state) occurring at density close to 1 and (3)
allow to test the predictions of the main theoretical models developed to treat
the polymers adsorption problem.Comment: 14 pages, 6 figures. Accepted for publication in JSTA
Constraining the properties of neutron star crusts with the transient low-mass X-ray binary Aql X-1
Aql X-1 is a prolific transient neutron star low-mass X-ray binary that
exhibits an accretion outburst approximately once every year. Whether the
thermal X-rays detected in intervening quiescent episodes are the result of
cooling of the neutron star or due to continued low-level accretion remains
unclear. In this work we use Swift data obtained after the long and bright 2011
and 2013 outbursts, as well as the short and faint 2015 outburst, to
investigate the hypothesis that cooling of the accretion-heated neutron star
crust dominates the quiescent thermal emission in Aql X-1. We demonstrate that
the X-ray light curves and measured neutron star surface temperatures are
consistent with the expectations of the crust cooling paradigm. By using a
thermal evolution code, we find that ~1.2-3.2 MeV/nucleon of shallow heat
release describes the observational data well, depending on the assumed
mass-accretion rate and temperature of the stellar core. We find no evidence
for varying strengths of this shallow heating after different outbursts, but
this could be due to limitations of the data. We argue that monitoring Aql X-1
for up to ~1 year after future outbursts can be a powerful tool to break model
degeneracies and solve open questions about the magnitude, depth and origin of
shallow heating in neutron star crusts.Comment: 14 pages, 5 figures, 3 tables, accepted to MNRA
Instabilities in Zakharov Equations for Laser Propagation in a Plasma
F.Linares, G.Ponce, J-C.Saut have proved that a non-fully dispersive Zakharov
system arising in the study of Laser-plasma interaction, is locally well posed
in the whole space, for fields vanishing at infinity. Here we show that in the
periodic case, seen as a model for fields non-vanishing at infinity, the system
develops strong instabilities of Hadamard's type, implying that the Cauchy
problem is strongly ill-posed
Color superconductivity and quark stars
The search for new phases of strange quark matter inside neutron stars has recently received a lot of attention since it has been shown that the attractive nature of the one gluon exchange interaction in QCD may produce a superconducting phase in quark matter. We study an extended version of the Chromodielectric model with a BCS quark pairing implemented, and analyze the superconducting color flavor locked phase. We show that the inclusion in the free energy density of a negative term of the diquark condensate ensures the stability of quark matter. We explore the implications of our results in the structure of compact quark stars and explicitly show that CFL stars can be absolutely stable and more compact than strange stars.http://www.sciencedirect.com/science/article/B6TVB-4P2S5YJ-42/1/2224f7def9aa4492b89649257e90be2
Color superconductivity and quark stars
The search for new phases of strange quark matter inside neutron stars has recently received a lot of attention since it has been shown that the attractive nature of the one gluon exchange interaction in QCD may produce a superconducting phase in quark matter. We study an extended version of the Chromodielectric model with a BCS quark pairing implemented, and analyze the superconducting color flavor locked phase. We show that the inclusion in the free energy density of a negative term of the diquark condensate ensures the stability of quark matter. We explore the implications of our results in the structure of compact quark stars and explicitly show that CFL stars can be absolutely stable and more compact than strange stars.http://www.sciencedirect.com/science/article/B6TVB-4P2S5YJ-42/1/2224f7def9aa4492b89649257e90be2
Low-level accretion in neutron-star X-ray binaries
We search the literature for reports on the spectral properties of
neutron-star low-mass X-ray binaries when they have accretion luminosities
between 1E34 and 1E36 ergs/s. We found that in this luminosity range the photon
index (obtained from fitting a simple absorbed power-law in the 0.5-10 keV
range) increases with decreasing 0.5-10 keV X-ray luminosity (i.e., the
spectrum softens). Such behaviour has been reported before for individual
sources, but here we demonstrate that very likely most (if not all)
neutron-star systems behave in a similar manner and possibly even follow a
universal relation. When comparing the neutron-star systems with black-hole
systems, it is clear that most black-hole binaries have significantly harder
spectra at luminosities of 1E34 - 1E35 erg/s. Despite a limited number of data
points, there are indications that these spectral differences also extend to
the 1E35 - 1E36 erg/s range. This observed difference between the neutron-star
binaries and black-hole ones suggests that the spectral properties (between
0.5-10 keV) at 1E34 - 1E35 erg/s can be used to tentatively determine the
nature of the accretor in unclassified X-ray binaries. We discuss our results
in the context of properties of the accretion flow at low luminosities and we
suggest that the observed spectral differences likely arise from the
neutron-star surface becoming dominantly visible in the X-ray spectra. We also
suggest that both the thermal component and the non-thermal component might be
caused by low-level accretion onto the neutron-star surface for luminosities
below a few times 1E34 erg/s.Comment: Accepted for publication in MNRA
- …