5,945 research outputs found

    The effect of the lateral interactions on the critical behavior of long straight rigid rods on two-dimensional lattices

    Get PDF
    Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of attractive rigid rods of length k (k-mers) on square lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of parallel k-mers, was found. This ordered phase is separated from the isotropic state by a continuous transition occurring at a intermediate density \theta_c, which increases linearly with the magnitude of the lateral interactions.Comment: 7 pages, 6 figure

    Live Demonstration: Multiplexing AER Asynchronous Channels over LVDS Links with Flow-Control and Clock- Correction for Scalable Neuromorphic Systems

    Get PDF
    In this live demonstration we exploit the use of a serial link for fast asynchronous communication in massively parallel processing platforms connected to a DVS for realtime implementation of bio-inspired vision processing on spiking neural networks

    Critical behavior of long straight rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations

    Full text link
    The critical behavior of long straight rigid rods of length kk (kk-mers) on square and triangular lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of parallel kk-mers, was found. This ordered phase is separated from the isotropic state by a continuous transition occurring at a intermediate density θc\theta_c. Two analytical techniques were combined with Monte Carlo simulations to predict the dependence of θc\theta_c on kk, being θc(k)k1\theta_c(k) \propto k^{-1}. The first involves simple geometrical arguments, while the second is based on entropy considerations. Our analysis allowed us also to determine the minimum value of kk (kmin=7k_{min}=7), which allows the formation of a nematic phase on a triangular lattice.Comment: 23 pages, 5 figures, to appear in The Journal of Chemical Physic
    corecore