45,491 research outputs found
MEMS flow sensors for nano-fluidic applications
This paper presents micromachined thermal sensors for measuring liquid flow rates in the nanoliter-per-minute range. The sensors use a boron-doped polysilicon thinfilm heater that is embedded in the silicon nitride wall of a microchannel. The boron doping is chosen to increase the heaterâs temperature coefficient of resistance within tolerable noise limits, and the microchannel is suspended from the substrate to improve thermal isolation. The sensors have demonstrated a flow rate resolution below 10 nL/min, as well as the capability for detecting micro bubbles in the liquid. Heat transfer simulation has also been performed to explain the sensor operation and yielded good agreement with experimental data
Study of the ionic Peierls-Hubbard model using density matrix renormalization group methods
Density matrix renormalization group methods are used to investigate the
quantum phase diagram of a one-dimensional half-filled ionic Hubbard model with
bond-charge attraction, which can be mapped from the Su-Schrieffer-Heeger-type
electron-phonon coupling at the antiadiabatic limit. A bond order wave
(dimerized) phase which separates the band insulator from the Mott insulator
always exists as long as electron-phonon coupling is present. This is
qualitatively different from that at the adiabatic limit. Our results indicate
that electron-electron interaction, ionic potential and quantum phonon
fluctuations combine in the formation of the bond-order wave phase
Pore-scale dynamics and the multiphase Darcy law
Synchrotron x-ray microtomography combined with sensitive pressure differential measurements were used to study flow during steady-state injection of equal volume fractions of two immiscible fluids of similar viscosity through a 57-mm-long porous sandstone sample for a wide range of flow rates. We found three flow regimes. (1) At low capillary numbers, Ca, representing the balance of viscous to capillary forces, the pressure gradient, â P , across the sample was stable and proportional to the flow rate (total Darcy flux) q t (and hence capillary number), confirming the traditional conceptual picture of fixed multiphase flow pathways in porous media. (2) Beyond Ca â â 10 â 6 , pressure fluctuations were observed, while retaining a linear dependence between flow rate and pressure gradient for the same fractional flow. (3) Above a critical value Ca > Ca i â 10 â 5 we observed a power-law dependence with â P ⌠q a t with a â 0.6 associated with rapid fluctuations of the pressure differential of a magnitude equal to the capillary pressure. At the pore scale a transient or intermittent occupancy of portions of the pore space was captured, where locally flow paths were opened to increase the conductivity of the phases. We quantify the amount of this intermittent flow and identify the onset of rapid pore-space rearrangements as the point when the Darcy law becomes nonlinear. We suggest an empirical form of the multiphase Darcy law applicable for all flow rates, consistent with the experimental results
Watermarking FPGA Bitfile for Intellectual Property Protection
Intellectual property protection (IPP) of hardware designs is the most important requirement for many Field Programmable Gate Array (FPGA) intellectual property (IP) vendors. Digital watermarking has become an innovative technology for IPP in recent years. Existing watermarking techniques have successfully embedded watermark into IP cores. However, many of these techniques share two specific weaknesses: 1) They have extra overhead, and are likely to degrade performance of design; 2) vulnerability to removing attacks. We propose a novel watermarking technique to watermark FPGA bitfile for addressing these weaknesses. Experimental results and analysis show that the proposed technique incurs zero overhead and it is robust against removing attacks
- âŠ