64,724 research outputs found
A user's guide for the signal processing software for image and speech compression developed in the Communications and Signal Processing Laboratory (CSPL), version 1
A complete documentation of the software developed in the Communication and Signal Processing Laboratory (CSPL) during the period of July 1985 to March 1986 is provided. Utility programs and subroutines that were developed for a user-friendly image and speech processing environment are described. Additional programs for data compression of image and speech type signals are included. Also, programs for the zero-memory and block transform quantization in the presence of channel noise are described. Finally, several routines for simulating the perfromance of image compression algorithms are included
Symmetric achromatic low-beta collider interaction region design concept
We present a new symmetry-based concept for an achromatic low-beta collider
interaction region design. A specially-designed symmetric Chromaticity
Compensation Block (CCB) induces an angle spread in the passing beam such that
it cancels the chromatic kick of the final focusing quadrupoles. Two such CCBs
placed symmetrically around an interaction point allow simultaneous
compensation of the 1st-order chromaticities and chromatic beam smear at the IP
without inducing significant 2nd-order aberrations to the particle trajectory.
We first develop an analytic description of this approach and explicitly
formulate 2nd-order aberration compensation conditions at the interaction
point. The concept is next applied to develop an interaction region design for
the ion collider ring of an electron-ion collider. We numerically evaluate
performance of the design in terms of momentum acceptance and dynamic aperture.
The advantages of the new concept are illustrated by comparing it to the
conventional distributed-sextupole chromaticity compensation scheme.Comment: 12 pages, 17 figures, to be submitted to Phys. Rev. ST Accel. Beam
Study of the ionic Peierls-Hubbard model using density matrix renormalization group methods
Density matrix renormalization group methods are used to investigate the
quantum phase diagram of a one-dimensional half-filled ionic Hubbard model with
bond-charge attraction, which can be mapped from the Su-Schrieffer-Heeger-type
electron-phonon coupling at the antiadiabatic limit. A bond order wave
(dimerized) phase which separates the band insulator from the Mott insulator
always exists as long as electron-phonon coupling is present. This is
qualitatively different from that at the adiabatic limit. Our results indicate
that electron-electron interaction, ionic potential and quantum phonon
fluctuations combine in the formation of the bond-order wave phase
Sliding of Electron Crystal of Finite Size on the Surface of Superfluid He-4 Confined in a Microchannel
We present a new study of the nonlinear transport of a two-dimensional
electron crystal on the surface of liquid helium confined in a 10
micrometer-wide channel in which the effective length of the crystal can be
varied from 10 to 215 micrometers. At low driving voltages, the moving electron
crystal is strongly coupled to deformation of the liquid surface arising from
resonant excitation of surface capillary waves, ripplons, while at higher
driving voltages the crystal decouples from the deformation. We find strong
dependence of the decoupling threshold of the driving electric field acting on
the electrons, on the size of the crystal. In particular, the threshold
electric field significantly decreases when the length of the crystal becomes
shorter than 25 micrometers. We explain this effect as arising from weakening
of surface deformations due to radiative loss of resonantly-excited ripplons
from an electron crystal of finite size, and we account for the observed effect
using an instructive analytical model.Comment: 5 figure
Boson Core Compressibility
Strongly interacting atoms trapped in optical lattices can be used to explore
phase diagrams of Hubbard models. Spatial inhomogeneity due to trapping
typically obscures distinguishing observables. We propose that measures using
boson double occupancy avoid trapping effects to reveal key correlation
functions. We define a boson core compressibility and core superfluid stiffness
in terms of double occupancy. We use quantum Monte Carlo on the Bose-Hubbard
model to empirically show that these quantities intrinsically eliminate edge
effects to reveal correlations near the trap center. The boson core
compressibility offers a generally applicable tool that can be used to
experimentally map out phase transitions between compressible and
incompressible states.Comment: 11 pages, 11 figure
Strongly Localized Electrons in a Magnetic Field: Exact Results on Quantum Interference and Magnetoconductance
We study quantum interference effects on the transition strength for strongly
localized electrons hopping on 2D square and 3D cubic lattices in a magnetic
field B. In 2D, we obtain closed-form expressions for the tunneling probability
between two arbitrary sites by exactly summing the corresponding phase factors
of all directed paths connecting them. An analytic expression for the
magnetoconductance, as an explicit function of the magnetic flux, is derived.
In the experimentally important 3D case, we show how the interference patterns
and the small-B behavior of the magnetoconductance vary according to the
orientation of B.Comment: 4 pages, RevTe
From Bounded Checking to Verification of Equivalence via Symbolic Up-to Techniques
We present a bounded equivalence verification technique for higher-order programs with local state. This technique combines fully abstract symbolic environmental bisimulations similar to symbolic game semantics, novel up-to techniques, and lightweight state invariant annotations. This yields an equivalence verification technique with no false positives or negatives. The technique is bounded-complete, in that all inequivalences are automatically detected given large enough bounds. Moreover, several hard equivalences are proved automatically or after being annotated with state invariants. We realise the technique in a tool prototype called Hobbit and benchmark it with an extensive set of new and existing examples. Hobbit can prove many classical equivalences including all Meyer and Sieber examples
- …