135,512 research outputs found
Observation of strong electron dephasing in disordered CuGeAu thin films
We report the observation of strong electron dephasing in a series of
disordered CuGeAu thin films. A very short electron dephasing
time possessing very weak temperature dependence around 6 K, followed by an
upturn with further decrease in temperature below 4 K, is found. The upturn is
progressively more pronounced in more disordered samples. Moreover, a ln
dependent, but high-magnetic-field-insensitive, resistance rise persisting from
above 10 K down to 30 mK is observed in the films. These results suggest a
nonmagnetic dephasing process which is stronger than any known mechanism and
may originate from the coupling of conduction electrons to dynamic defects.Comment: to appear in Phys. Rev. Let
A Two-Dimensional Carbon Semiconductor
We show that patterned defects can be used to disrupt the sub-lattice
symmetry of graphene so as to open up a band gap. This way of modifying
graphene's electronic structure does not rely on external agencies, the
addition of new elements or special boundaries. The method is used to predict a
planar, low energy, graphene allotrope with a band gap of 1.2 eV. This defect
engineering also allows semiconducting ribbons of carbon to be fabricated
within graphene. Linear arrangements of defects lead to naturally embedded
ribbons of the semiconducting material in graphene, offering the prospect of
two-dimensional circuit logic composed entirely of carbon.Comment: 4 pages, 5 figure
Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction
This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs) by using genetic algorithms (GA). The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate) for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer) ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC) was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.). Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.This research was supported by the National Science Council (NSC) of Taiwan (Grant no. NSC98-2915-I-155-005), the Department of Education grant of Excellent Teaching Program of Yuan Ze University (Grant no. 217517) and the Center for Dynamical Biomarkers and Translational Medicine supported by National Science Council (Grant no. NSC 100- 2911-I-008-001)
Calibration and Irradiation Study of the BGO Background Monitor for the BEAST II Experiment
Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism
for A STable experiment II (BEAST II) project is particularly designed to
measure the beam backgrounds around the interaction point of the SuperKEKB
collider for the Belle II experiment. We develop a system using bismuth
germanium oxide (BGO) crystals with optical fibers connecting to a multianode
photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA)
embedded readout board for monitoring the real-time beam backgrounds in BEAST
II. The overall radiation sensitivity of this system is estimated to be
Gy/ADU (analog-to-digital unit) with the standard
10 m fibers for transmission and the MAPMT operating at 700 V. Our -ray
irradiation study of the BGO system shows that the exposure of BGO crystals to
Co -ray doses of 1 krad has led to immediate light output
reductions of 25--40%, and the light outputs further drop by 30--45% after the
crystals receive doses of 2--4 krad. Our findings agree with those of the
previous studies on the radiation hard (RH) BGO crystals grown by the low
thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the
BGO system is also consistent with the simulation, and is estimated to be about
1.18 times the equivalent dose. These results prove that the BGO system is able
to monitor the background dose rate in real time under extreme high radiation
conditions. This study concludes that the BGO system is reliable for the beam
background study in BEAST II
Software-Engineering Process Simulation (SEPS) model
The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments
Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope
The onset of a solar eruption is formulated here as either a magnetic
catastrophe or as an instability. Both start with the same equation of force
balance governing the underlying equilibria. Using a toroidal flux rope in an
external bipolar or quadrupolar field as a model for the current-carrying flux,
we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for
several representative evolutionary sequences in the stable domain of parameter
space. We verify that this catastrophe and the torus instability occur at the
same point; they are thus equivalent descriptions for the onset condition of
solar eruptions.Comment: V2: update to conform to the published article; new choice for
internal inductance of torus; updated Fig. 2; new Figs. 3, 5, and
- …