128,725 research outputs found
Concrete: Potential material for Space Station
To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth
On the Tidal Dissipation of Obliquity
We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an
initial random orientation of obliquity and parameters relevant to the observed
population, the obliquity of hot Jupiters does not evolve to purely aligned
systems. In fact, the obliquity evolves to either prograde, retrograde or
90^{o} orbits where the torque due to tidal perturbations vanishes. This
distribution is incompatible with observations which show that hot jupiters
around cool stars are generally aligned. This calls into question the viability
of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters
around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ
Using LIP to Gloss Over Faces in Single-Stage Face Detection Networks
This work shows that it is possible to fool/attack recent state-of-the-art
face detectors which are based on the single-stage networks. Successfully
attacking face detectors could be a serious malware vulnerability when
deploying a smart surveillance system utilizing face detectors. We show that
existing adversarial perturbation methods are not effective to perform such an
attack, especially when there are multiple faces in the input image. This is
because the adversarial perturbation specifically generated for one face may
disrupt the adversarial perturbation for another face. In this paper, we call
this problem the Instance Perturbation Interference (IPI) problem. This IPI
problem is addressed by studying the relationship between the deep neural
network receptive field and the adversarial perturbation. As such, we propose
the Localized Instance Perturbation (LIP) that uses adversarial perturbation
constrained to the Effective Receptive Field (ERF) of a target to perform the
attack. Experiment results show the LIP method massively outperforms existing
adversarial perturbation generation methods -- often by a factor of 2 to 10.Comment: to appear ECCV 2018 (accepted version
Permanence analysis of a concatenated coding scheme for error control
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed
An Investigation, Using Standard Experimental Techniques, to Determine FLCs at Elevated Temperature for Aluminium Alloys
An experimental procedure has been developed for the determination of FLCs at elevated temperatures. The GOM ARGUS system was employed for measuring surface strain based on pre-applied grids (pattern), and limit strains were determined according to the ISO 12004-2:2008 standard. Forming limit curves (FLCs) have been determined for AA5754 under warm forming conditions in an isothermal environment. The tests were carried out at various temperatures up to 300oC and forming speeds ranging from 5 – 300 mm s-1 . Results reveal the significant effect of both temperature and forming speed on FLCs of AA5754. Formability increases with increasing temperature above 200oC. Formability also increases with decreasing speed. The presented FLC results show that the best formability exists at low forming speed and the high temperature end of the warm forming range
Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars
We propose that the observed misalignment between extra-solar planets and
their hot host stars can be explained by angular momentum transport within the
host star. Observations have shown that this misalignment is preferentially
around hot stars, which have convective cores and extended radiative envelopes.
This situation is amenable to substantial angular momentum transport by
internal gravity waves (IGW) generated at the convective-radiative interface.
Here we present numerical simulations of this process and show that IGW can
modulate the surface rotation of the star. With these two- dimensional
simulations we show that IGW could explain the retrograde orbits observed in
systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity
objects will await future three- dimensional simulations. We note that these
results also imply that individual massive stars should show temporal
variations in their v sini measurements.Comment: 6 pages, 2 figures, Accepted for publication in ApJ
Physical properties of concrete made with Apollo 16 lunar soil sample
This paper describes the first phase of the long-term investigation for the construction of concrete lunar bases. In this phase, petrographic and scanning electron microscope examinations showed that the morphology and elemental composition of the lunar soil made it suitable for use as a fine aggregate for concrete. Based on this finding, calcium aluminate cement and distilled water were mixed with the lunar soil to fabricate test specimens. The test specimens consisted of a 1-in cube, a 1/2-in cube, and three 0.12 x 0.58 x 3.15-in beam specimens. Tests were performed on these specimens to determine compressive strength, modulus of rupture, modulus of elasticity, and thermal coefficient of expansion. Based on examination of the material and test results, it is concluded that lunar soil can be used as a fine aggregate for concrete
Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies
Fine powders of micron- and submicron-sized particles of undoped Cu2O
semiconductor, with three different sizes and morphologies have been
synthesized by different chemical processes. These samples include nanospheres
200 nm in diameter, octahedra of size 1 micron, and polyhedra of size 800 nm.
They exhibit a wide spectrum of magnetic properties. At low temperature, T = 5
K, the octahedron sample is diamagnetic. The nanosphere is paramagnetic. The
other two polyhedron samples synthesized in different runs by the same process
are found to show different magnetic properties. One of them exhibits weak
ferromagnetism with T_C = 455 K and saturation magnetization, M_S = 0.19 emu/g
at T = 5 K, while the other is paramagnetic. The total magnetic moment
estimated from the detected impurity concentration of Fe, Co, and Ni, is too
small to account for the observed magnetism by one to two orders of magnitude.
Calculations by the density functional theory (DFT) reveal that cation
vacancies in the Cu2O lattice are one of the possible causes of induced
magnetic moments. The results further predict that the defect-induced magnetic
moments favour a ferromagnetically coupled ground state if the local
concentration of cation vacancies, n_C, exceeds 12.5%. This offers a possible
scenario to explain the observed magnetic properties. The limitations of the
investigations in the present work, in particular in the theoretical
calculations, are discussed and possible areas for further study are suggested.Comment: 20 pages, 5 figures 2 tables, submitted to J Phys Condense Matte
Intrinsic Josephson Effects in the Magnetic Superconductor RuSr2GdCu2O8
We have measured interlayer current transport in small sized RuSr2GdCu2O8
single crystals. We find a clear intrinsic Josephson effect showing that the
material acts as a natural
superconductor-insulator-ferromagnet-insulator-superconductor superlattice. So
far, we detected no unconventional behavior due to the magnetism of the RuO2
layers.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
- …
