3,030 research outputs found

    Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies

    Full text link
    We have investigated two-electron bound state formation in a square two-dimensional t-J-U model with hopping anisotropies for zero electron density; these anisotropies are introduced to mimic the hopping energies similar to those expected in stripe-like arrangements of holes and spins found in various transition metal oxides. In this report we provide analytical solutions to this problem, and thus demonstrate that bound-state formation occurs at a critical exchange coupling, J_c, that decreases to zero in the limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be contrasted with J_c/t = 2 for either a one-dimensional chain, or a two-dimensional plane with isotropic hopping. Most importantly, this behaviour is found to be qualitatively similar to that of two electrons on the two-leg ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter result as guidance, we have evaluated the pair correlation function, thus determining that the bound state corresponds to one electron moving along one chain, with the second electron moving along the opposite chain, similar to two electrons confined to move along parallel, neighbouring, metallic stripes. We emphasize that the above results are not restricted to the zero density limit - we have completed an exact diagonalization study of two holes in a 12 X 2 two-leg ladder described by the t-J model and have found that the above-mentioned lowering of the binding energy with hopping anisotropy persists near half filling.Comment: 6 pages, 3 eps figure

    The Off-diagonal Goldberger-Treiman Relation and Its Discrepancy

    Get PDF
    We study the off-diagonal Goldberger-Treiman relation (ODGTR) and its discrepancy (ODGTD) in the N, Delta, pi sector through O(p^2) using heavy baryon chiral perturbation theory. To this order, the ODGTD and axial vector N to Delta transition radius are determined solely by low energy constants. Loop corrections appear at O(p^4). For low-energy constants of natural size, the ODGTD would represent a ~ 2% correction to the ODGTR. We discuss the implications of the ODGTR and ODGTD for lattice and quark model calculations of the transition form factors and for parity-violating electroexcitation of the Delta.Comment: 11 pages, 1 eps figur

    Deflection of coronal rays by remote CMEs: shock wave or magnetic pressure?

    Full text link
    We analyze five events of the interaction of coronal mass ejections (CMEs) with the remote coronal rays located up to 90^\circ away from the CME as observed by the SOHO/LASCO C2 coronagraph. Using sequences of SOHO/LASCO C2 images, we estimate the kink propagation in the coronal rays during their interaction with the corresponding CMEs ranging from 180 to 920 km/s within the interval of radial distances form 3 R. to 6 R. . We conclude that all studied events do not correspond to the expected pattern of shock wave propagation in the corona. Coronal ray deflection can be interpreted as the influence of the magnetic field of a moving flux rope related to a CME. The motion of a large-scale flux rope away from the Sun creates changes in the structure of surrounding field lines, which are similar to the kink propagation along coronal rays. The retardation of the potential should be taken into account since the flux rope moves at high speed comparable with the Alfven speed.Comment: Accepted for Publication in Solar Physic

    Topological Superfluid in one-dimensional Ultracold Atomic System with Spin-Orbit Coupling

    Full text link
    We propose a one-dimensional Hamiltonian H1DH_{1D} which supports Majorana fermions when dx2y2d_{x^{2}-y^{2}}-wave superfluid appears in the ultracold atomic system and obtain the phase-separation diagrams both for the time-reversal-invariant case and time-reversal-symmetry-breaking case. From the phase-separation diagrams, we find that the single Majorana fermions exist in the topological superfluid region, and we can reach this region by tuning the chemical potential μ\mu and spin-orbit coupling αR\alpha_{R}. Importantly, the spin-orbit coupling has realized in ultracold atoms by the recent experimental achievement of synthetic gauge field, therefore, our one-dimensional ultra-cold atomic system described by H1DH_{1D} is a promising platform to find the mysterious Majorana fermions.Comment: 5 papers, 2 figure

    Universality of the Crossing Probability for the Potts Model for q=1,2,3,4

    Full text link
    The universality of the crossing probability πhs\pi_{hs} of a system to percolate only in the horizontal direction, was investigated numerically by using a cluster Monte-Carlo algorithm for the qq-state Potts model for q=2,3,4q=2,3,4 and for percolation q=1q=1. We check the percolation through Fortuin-Kasteleyn clusters near the critical point on the square lattice by using representation of the Potts model as the correlated site-bond percolation model. It was shown that probability of a system to percolate only in the horizontal direction πhs\pi_{hs} has universal form πhs=A(q)Q(z)\pi_{hs}=A(q) Q(z) for q=1,2,3,4q=1,2,3,4 as a function of the scaling variable z=[b(q)L1ν(q)(ppc(q,L))]ζ(q)z= [ b(q)L^{\frac{1}{\nu(q)}}(p-p_{c}(q,L)) ]^{\zeta(q)}. Here, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed, A(q)A(q) is the nonuniversal crossing amplitude, b(q)b(q) is the nonuniversal metric factor, ζ(q)\zeta(q) is the nonuniversal scaling index, ν(q)\nu(q) is the correlation length index. The universal function Q(x)exp(z)Q(x) \simeq \exp(-z). Nonuniversal scaling factors were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed, journal-ref added

    Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors.

    Get PDF
    'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management

    Electron Dephasing in Mesoscopic Metal Wires

    Full text link
    The low-temperature behavior of the electron phase coherence time, τϕ\tau_{\phi}, in mesoscopic metal wires has been a subject of controversy recently. Whereas theory predicts that τϕ(T)\tau_{\phi}(T) in narrow wires should increase as T2/3T^{-2/3} as the temperature TT is lowered, many samples exhibit a saturation of τϕ\tau_{\phi} below about 1 K. We review here the experiments we have performed recently to address this issue. In particular we emphasize that in sufficiently pure Ag and Au samples we observe no saturation of τϕ\tau_{\phi} down to our base temperature of 40 mK. In addition, the measured magnitude of τϕ\tau_{\phi} is in excellent quantitative agreement with the prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We discuss possible explanations why saturation of τϕ\tau_{\phi} is observed in many other samples measured in our laboratory and elsewhere, and answer the criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200

    Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies

    Full text link
    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focussing on the particular example of the classically recollapsing Bianchi IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse-graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasi-classical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic "J d\Sigma" rule of quantum cosmology, as well as a generalization of this rule to generic initial states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout. Physics unchanged. To appear in Phys. Rev.

    Quasi-Isotropization of the Inhomogeneous Mixmaster Universe Induced by an Inflationary Process

    Get PDF
    We derive a ``generic'' inhomogeneous ``bridge'' solution for a cosmological model in the presence of a real self-interacting scalar field. This solution connects a Kasner-like regime to an inflationary stage of evolution and therefore provides a dynamical mechanism for the quasi-isotropization of the universe. In the framework of a standard Arnowitt-Deser-Misner Hamiltonian formulation of the dynamics and by adopting Misner-Chitr\`e-like variables, we integrate the Einstein-Hamilton-Jacobi equation corresponding to a ``generic'' inhomogeneous cosmological model whose evolution is influenced by the coupling with a bosonic field, expected to be responsible for a spontaneous symmetry breaking configuration. The dependence of the detailed evolution of the universe on the initial conditions is then appropriately characterized.Comment: 17 pages, no figure, to appear on PR

    Role of Umklapp Processes in Conductivity of Doped Two-Leg Ladders

    Full text link
    Recent conductivity measurements performed on the hole-doped two-leg ladder material Sr14xCaxCu24O41\mathrm{Sr_{14-x}Ca_xCu_{24}O_{41}} reveal an approximately linear power law regime in the c-axis DC resistivity as a function of temperature for x=11x=11. In this work, we employ a bosonic model to argue that umklapp processes are responsible for this feature and for the high spectral weight in the optical conductivity which occurs beyond the finite frequency Drude-like peak. Including quenched disorder in our model allows us to reproduce experimental conductivity and resistivity curves over a wide range of energies. We also point out the differences between the effect of umklapp processes in a single chain and in the two-leg ladder.Comment: 10 pages, 2 figure
    corecore