3,030 research outputs found
Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies
We have investigated two-electron bound state formation in a square
two-dimensional t-J-U model with hopping anisotropies for zero electron
density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in stripe-like arrangements of holes and spins found
in various transition metal oxides. In this report we provide analytical
solutions to this problem, and thus demonstrate that bound-state formation
occurs at a critical exchange coupling, J_c, that decreases to zero in the
limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be
contrasted with J_c/t = 2 for either a one-dimensional chain, or a
two-dimensional plane with isotropic hopping. Most importantly, this behaviour
is found to be qualitatively similar to that of two electrons on the two-leg
ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter
result as guidance, we have evaluated the pair correlation function, thus
determining that the bound state corresponds to one electron moving along one
chain, with the second electron moving along the opposite chain, similar to two
electrons confined to move along parallel, neighbouring, metallic stripes. We
emphasize that the above results are not restricted to the zero density limit -
we have completed an exact diagonalization study of two holes in a 12 X 2
two-leg ladder described by the t-J model and have found that the
above-mentioned lowering of the binding energy with hopping anisotropy persists
near half filling.Comment: 6 pages, 3 eps figure
The Off-diagonal Goldberger-Treiman Relation and Its Discrepancy
We study the off-diagonal Goldberger-Treiman relation (ODGTR) and its
discrepancy (ODGTD) in the N, Delta, pi sector through O(p^2) using heavy
baryon chiral perturbation theory. To this order, the ODGTD and axial vector N
to Delta transition radius are determined solely by low energy constants. Loop
corrections appear at O(p^4). For low-energy constants of natural size, the
ODGTD would represent a ~ 2% correction to the ODGTR. We discuss the
implications of the ODGTR and ODGTD for lattice and quark model calculations of
the transition form factors and for parity-violating electroexcitation of the
Delta.Comment: 11 pages, 1 eps figur
Deflection of coronal rays by remote CMEs: shock wave or magnetic pressure?
We analyze five events of the interaction of coronal mass ejections (CMEs)
with the remote coronal rays located up to 90^\circ away from the CME as
observed by the SOHO/LASCO C2 coronagraph. Using sequences of SOHO/LASCO C2
images, we estimate the kink propagation in the coronal rays during their
interaction with the corresponding CMEs ranging from 180 to 920 km/s within the
interval of radial distances form 3 R. to 6 R. . We conclude that all studied
events do not correspond to the expected pattern of shock wave propagation in
the corona. Coronal ray deflection can be interpreted as the influence of the
magnetic field of a moving flux rope related to a CME. The motion of a
large-scale flux rope away from the Sun creates changes in the structure of
surrounding field lines, which are similar to the kink propagation along
coronal rays. The retardation of the potential should be taken into account
since the flux rope moves at high speed comparable with the Alfven speed.Comment: Accepted for Publication in Solar Physic
Topological Superfluid in one-dimensional Ultracold Atomic System with Spin-Orbit Coupling
We propose a one-dimensional Hamiltonian which supports Majorana
fermions when -wave superfluid appears in the ultracold atomic
system and obtain the phase-separation diagrams both for the
time-reversal-invariant case and time-reversal-symmetry-breaking case. From the
phase-separation diagrams, we find that the single Majorana fermions exist in
the topological superfluid region, and we can reach this region by tuning the
chemical potential and spin-orbit coupling . Importantly, the
spin-orbit coupling has realized in ultracold atoms by the recent experimental
achievement of synthetic gauge field, therefore, our one-dimensional ultra-cold
atomic system described by is a promising platform to find the
mysterious Majorana fermions.Comment: 5 papers, 2 figure
Universality of the Crossing Probability for the Potts Model for q=1,2,3,4
The universality of the crossing probability of a system to
percolate only in the horizontal direction, was investigated numerically by
using a cluster Monte-Carlo algorithm for the -state Potts model for
and for percolation . We check the percolation through
Fortuin-Kasteleyn clusters near the critical point on the square lattice by
using representation of the Potts model as the correlated site-bond percolation
model. It was shown that probability of a system to percolate only in the
horizontal direction has universal form for
as a function of the scaling variable . Here,
is the probability of a bond to be closed, is the
nonuniversal crossing amplitude, is the nonuniversal metric factor,
is the nonuniversal scaling index, is the correlation
length index.
The universal function . Nonuniversal scaling factors
were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed,
journal-ref added
Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors.
'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management
Electron Dephasing in Mesoscopic Metal Wires
The low-temperature behavior of the electron phase coherence time,
, in mesoscopic metal wires has been a subject of controversy
recently. Whereas theory predicts that in narrow wires should
increase as as the temperature is lowered, many samples exhibit
a saturation of below about 1 K. We review here the experiments
we have performed recently to address this issue. In particular we emphasize
that in sufficiently pure Ag and Au samples we observe no saturation of
down to our base temperature of 40 mK. In addition, the measured
magnitude of is in excellent quantitative agreement with the
prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We
discuss possible explanations why saturation of is observed in
many other samples measured in our laboratory and elsewhere, and answer the
criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference
"Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September,
200
Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies
A sum-over-histories generalized quantum theory is developed for homogeneous
minisuperspace type A Bianchi cosmological models, focussing on the particular
example of the classically recollapsing Bianchi IX universe. The decoherence
functional for such universes is exhibited. We show how the probabilities of
decoherent sets of alternative, coarse-grained histories of these model
universes can be calculated. We consider in particular the probabilities for
classical evolution defined by a suitable coarse-graining. For a restricted
class of initial conditions and coarse grainings we exhibit the approximate
decoherence of alternative histories in which the universe behaves classically
and those in which it does not. For these situations we show that the
probability is near unity for the universe to recontract classically if it
expands classically. We also determine the relative probabilities of
quasi-classical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic "J d\Sigma" rule of
quantum cosmology, as well as a generalization of this rule to generic initial
states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout.
Physics unchanged. To appear in Phys. Rev.
Quasi-Isotropization of the Inhomogeneous Mixmaster Universe Induced by an Inflationary Process
We derive a ``generic'' inhomogeneous ``bridge'' solution for a cosmological
model in the presence of a real self-interacting scalar field. This solution
connects a Kasner-like regime to an inflationary stage of evolution and
therefore provides a dynamical mechanism for the quasi-isotropization of the
universe. In the framework of a standard Arnowitt-Deser-Misner Hamiltonian
formulation of the dynamics and by adopting Misner-Chitr\`e-like variables, we
integrate the Einstein-Hamilton-Jacobi equation corresponding to a ``generic''
inhomogeneous cosmological model whose evolution is influenced by the coupling
with a bosonic field, expected to be responsible for a spontaneous symmetry
breaking configuration. The dependence of the detailed evolution of the
universe on the initial conditions is then appropriately characterized.Comment: 17 pages, no figure, to appear on PR
Role of Umklapp Processes in Conductivity of Doped Two-Leg Ladders
Recent conductivity measurements performed on the hole-doped two-leg ladder
material reveal an approximately linear
power law regime in the c-axis DC resistivity as a function of temperature for
. In this work, we employ a bosonic model to argue that umklapp processes
are responsible for this feature and for the high spectral weight in the
optical conductivity which occurs beyond the finite frequency Drude-like peak.
Including quenched disorder in our model allows us to reproduce experimental
conductivity and resistivity curves over a wide range of energies. We also
point out the differences between the effect of umklapp processes in a single
chain and in the two-leg ladder.Comment: 10 pages, 2 figure
- …
