225,002 research outputs found

    The heating of the thermal plasma with energetic electrons in small solar flares

    Get PDF
    The energetic electrons deduced from hard X-rays in the thick target model may be responsible for heating of soft X-ray plasma in solar flares. It is shown from OSO-7 studies that if a cutoff of 10 keV is assumed, the total electron is comparable to the thermal plasma energy. However, (1) the soft X-ray emission often appears to begin before the hard X-ray burst, (2) in about one-third of flares there is no detectable hard X-ray emission, and (3) for most events the energy content (assuming constant density) of soft X-ray plasma continues to rise after the end of the hard X-ray burst. To understand these problems we have analyzed the temporal relationship between soft X-rays and hard X-rays for 20 small events observed by ISEE-3 during 1980. One example is shown. The start of soft X-ray and hard X-ray bursts is defined as the time when the counting rates of the 4.8 to 5. keV and 25.8 to 43.2 keV channels, respectively, exceed the background by one standard deviation

    Particle acceleration by the sun

    Get PDF
    A review is given of the analysis of new observations of energetic particles and energetic secondary emissions obtained over the solar maxium (approx. 1980) by the Solar Maximum mission, Hinotori, the international Sun-Earth Explorer, Helios, Explorer satellites, and Voyager spacecraft. Solar energetic particle events observed in space, He(3)- rich events, solar gamma rays and neutrons, and solar neutrinos are discussed

    Depolarization-activated potentiation of the T fiber synapse in the blue crab

    Full text link
    The blue crab T fiber synapse, associated with the stretch receptor of the swimming leg, has a nonspiking presynaptic element that mediates tonic transmission. This synapse was isolated and a voltage clamp circuit was used to control the membrane potential at the release sites. The dependence of transmitter release on extracellular calcium, [Ca]o, was studied over a range of 2.5-40 mM. A power relationship of 2.7 was obtained between excitatory postsynaptic potential (EPSP) rate of rise and [Ca]o. Brief presynaptic depolarizing steps, 5-10 ms, presented at 0.5 Hz activated EPSP's of constant amplitude. Inserting a 300-ms pulse (conditioning pulse) between these test pulses potentiated the subsequent test EPSPs. This depolarization-activated potentiation (DAP) lasted for 10-20 s and decayed with a single exponential time course. The decay time course remained invariant with test pulse frequencies ranging from 0.11 to 1.1 Hz. The magnitude and decay time course of DAP were independent of the test pulse amplitudes. The magnitude of DAP was a function of conditioning pulse amplitudes. Large conditioning pulses activated large potentiations, whereas the decay time constants were not changed. The DAP is a Ca-dependent process. When the amplitude of conditioning pulses approached the Ca equilibrium potential, the magnitude of potentiation decreased. Repeated application of conditioning pulses, at 2-s intervals, did not produce additional potentiation beyond the level activated by the first conditioning pulse. Comparison of the conditioning EPSP waveforms activated repetitively indicated that potentiation lasted transiently, 100 ms, during a prolonged release. Possible mechanisms of the potentiation are discussed in light of these new findings.The blue crab T fiber synapse, associated with the stretch receptor of the swimming leg, has a nonspiking presynaptic element that mediates tonic transmission. This synapse was isolated and a voltage clamp circuit was used to control the membrane potential at the release sites. The dependence of transmitter release on extracellular calcium, [Ca]o, was studied over a range of 2.5-40 mM. A power relationship of 2.7 was obtained between excitatory postsynaptic potential (EPSP) rate of rise and [Ca]o. Brief presynaptic depolarizing steps, 5-10 ms, presented at 0.5 Hz activated EPSP's of constant amplitude. Inserting a 300-ms pulse (conditioning pulse) between these test pulses potentiated the subsequent test EPSPs. This depolarization-activated potentiation (DAP) lasted for 10-20 s and decayed with a single exponential time course. The decay time course remained invariant with test pulse frequencies ranging from 0.11 to 1.1 Hz. The magnitude and decay time course of DAP were independent of the test pulse amplitudes. The magnitude of DAP was a function of conditioning pulse amplitudes. Large conditioning pulses activated large potentiations, whereas the decay time constants were not changed. The DAP is a Ca-dependent process. When the amplitude of conditioning pulses approached the Ca equilibrium potential, the magnitude of potentiation decreased. Repeated application of conditioning pulses, at 2-s intervals, did not produce additional potentiation beyond the level activated by the first conditioning pulse. Comparison of the conditioning EPSP waveforms activated repetitively indicated that potentiation lasted transiently, 100 ms, during a prolonged release. Possible mechanisms of the potentiation are discussed in light of these new findings.NS-07942 - NINDS NIH HHS; NS-13742 - NINDS NIH HH

    Vacuum polarization for neutral particles in 2+1 dimensions

    Get PDF
    In 2+1 dimensions there exists a duality between a charged Dirac particle coupled minimally to a background vector potential and a neutral one coupled nonminimally to a background electromagnetic field strength. A constant uniform background electric current induces in the vacuum of the neutral particle a fermion current which is proportional to the background one. A background electromagnetic plane wave induces no current in the vacuum. For constant but nonuniform background electric charge, known results for charged particles can be translated to give the induced fermion number. Some new examples with infinite background electric charge are presented. The induced spin and total angular momentum are also discussed.Comment: REVTeX, 7 pages, no figur

    Relationship between Fujikawa's Method and the Background Field Method for the Scale Anomaly

    Get PDF
    We show the equivalence between Fujikawa's method for calculating the scale anomaly and the diagrammatic approach to calculating the effective potential via the background field method, for an O(N)O(N) symmetric scalar field theory. Fujikawa's method leads to a sum of terms, each one superficially in one-to-one correspondence with a vacuum diagram of the 1-loop expansion. From the viewpoint of the classical action, the anomaly results in a breakdown of the Ward identities due to a scale-dependence of the couplings, whereas in terms of the effective action, the anomaly is the result of the breakdown of Noether's theorem due to explicit symmetry breaking terms of the effective potential.Comment: 9 pages (this version is the published version

    Wind turbulence inputs for horizontal axis wind turbines

    Get PDF
    Wind turbine response characteristics in the presence of atmospheric turbulence was predicted using two major modeling steps. First, the important atmospheric sources for the force excitations felt by the wind turbine system were identified and characterized. Second, a dynamic model was developed which describes how these excitations are transmitted through the structure and power train. The first modeling step, that of quantifying the important excitations due to the atmospheric turbulence was established. The dynamic modeling of the second step was undertaken separately

    Thermal/acoustical aircraft insulation material

    Get PDF
    Attempts made to improve the acoustical properties of low density Fiberfrax foam, an aircraft insulation material, are reported. Characterizations were also made of the physical and thermal properties. Two methods, optimization of fiber blend composition and modification of the foam fabrication process, were examined as possible means of improving foam acoustics. Flame impingement tests were also made; results show performance was satisfactory
    corecore