
WIND TURBULENCE INPUTS FOR HORIZONTAL AXIS WIND TURBINES

W.E. Holley, R.W. Thresher, and S-R. Lin

Department of Mechanical Engineering
Oregon State University

Corvallis, OR 97331

I. INTRODUCTION

In order to predict wind turbine response charac-
teristics in the presence of atmospheric turbu-
lence, two major modeling steps are required•
First, the important atmospheric sources for the
force e×citations Telt by the wind turbine sys-
tem must be identified and characterized. Second,
a dynamic model must be developed which describes
how these excitations are transmitted through the
structure and power train. The goal of this
paper is to establish the first modeling step,
that of quantifying the important excitations due
to the atmospheric turbulence. The dynamic model-
ing of the second step is undertaken in the ac-
companying paper (l).

Fluctuations in the aerodynamic forces on a wind
turbine blade are generated by the relative motions
of the air with respect to the blade. These rela-
tive motions are comprised of two parts: the
motions of the blade and the motions of the air.
The motions of the air can further be divided
into the undisturbed turbulent flow and the
"induced flow" due to the presence of the wind
turbine wake. The terms comprising the undisturbed
flow will be characterized in this paper. More
precisely, for a horizontal axis wind turbine,
the aerodynamic forces are determined by the
instantaneous air velocity distribution along
each of the turbine blades. These blades in turn

are w_otating through the turbulence field which
is being convected past the turbine rotor disc.
It is thus necessary to characterize the wind
turbulence field by a three-dimensional velocity
vector which varies randomly with time and with
the position in space. A complete statistical
description of this turbulent velocity field re-
quires the determination of all possible joint
probability distributions between different
velocity components at different times and
positions in space. Clearly, such a description
will not be possible without considerable simpli-
fication. The validity of the resulting simpli-
fied model will depend upon a comparison of the
characteristics predicted by the model and those
observed in the atmosphere and more importantly,
tbos_ observed in actual wind turbine field tests.
In this paper we will describe the assumptions
and the analytical steps used to arrive at the
simplified model. In the accompanying paper the
model is used to predict wind turbine response
charactertistics. It is hoped that these results
will be verified in the near future by direct
comparison with the results of actual field tests.

2. MODEL ASSUMPTIONS AND APPROXIMATIONS

The first assumption relates to the type of sta-
tistical information which is necessary to describe
the _et aerodynamic forces and moments acting on
the turbine rotor. Several authors (2,3) have
indicated that the quantities needed for wind

turbine design can be obtained from the mean and
second-moment statistical characteristics of the
various system responses. For stationary pro-
cesses this information is contained in the mean
and power spectral density. In this type of
analysis, the mean and power spectral density are
characterized by a set of parameters. Rice's
theory (4) for computing the frequency of level
crossings or peaks is then used with the observed
parameter probability densities to obtain the
desired response statistics. In this paper, we
will strive to determine the power spectral
density characteristics of the turbulence. When
they are combined with the machine dynamic model,
we will assume that the resulting response sta-
tistics will be useful for machine design,

The next simplification assumes that the variation
in the turbulent velocity observed at a stationary
point is due primarily to the convection of the
turbulent edd!es past the tower. Known as Taylor's
frozen field hypothesis (5), this assumption is
widely used in reducing fixed-tower, wind turbu-
lence data and correlating these results with
data from spatially separated points (6).

The following assumptions which are often used in
analyses involving aircraft flying through turbu-
lence are more questionable when applied to turbu-
lence observed in the atmospheric boundary layer.
First, when the mean velocity field is subtracted
from the total instantaneous velocity field, the
resulting turbulent velocity is assumed to be
locally homogeneous. Thus, when vertical separa-
tions between points are as large as the disc
diameter, the correlations are not explicitly
height dependent. Second, the field is assumed
to be isotropic for all separations for which it
is homogeneous. The latter assumption is known
not to be precisely correct since the variance of
the vertical component is less than the horizontal
components (7) and the vertical and downwind com-
ponents are correlated due to the boundary layer
shear of the mean flow (8). However, no model
currently exists for predicting the three-dimen-
sional, nonisotropic correlations between velocity
components at points separated in space. In the
absence of a better model, the isotropic model will
be used with the understanding that the results
may need adjustment when more complete experimental
results are available.

With the previous assumptions (and assuming in-
compressible flow), Batchelor (9) has shown that
the correlation tensor between velocity components
at spatially separated points has the form

R
ij (_) = a2[f(_)_ij + ½ _f'(_)(_ij _')] (2.1)

m _ _
where ij(_) = E[vi(x + _)vj(_)]

vi(_) = ith velocity component at posltlon X
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_i = ith component of the separation

2+ + 2: V_l _3 =

_ij = l for i : j and 0 for i P j

f(_) = longitudinal correlation function

o2 = variance of the turbulent velocity

components

Von Karman (I0) suggested the form for the longi-
tudinal correlation function

hf_ _I/3 /3(aL) (2.2)f(_) : _,_-[-, K1

where a = 1.339

b = 0.5925

L = integral scale _ I f(C)dC
0

KI/3(.) : modified Bessel function of order
I/3

This function results in Kolmogorov's (II) -5/3
power law for the inertial subrange in the longi-
tudinal power spectral density.

At this point, a very useful approximation due to
Etkin (12) is introduced. The power of this
approximation is that it separates the computation
of the aerodynamic responses into two tractable
pieces. In the first, the spatial variation of
the turbulence is locally approximated by an ex-
pansion. The various time varying turbulence com-
ponents are then multiplied by standard aerody-
namic influence coefficients to obtain the re-
quired aerodynamic responses. These influence
coefficients are the same as those that would be
computed in the absence of turbulence. The re-
sults of this procedure are extensively used in
aircraft response calculations for flight through
turbulence (13). The results for the airplane
case, however, cannot be applied directly to the
wind turbine problem because of major differences
in the geometry. The aerodynamic surfaces of an
airplane lie in a nearly horizontal plane while
the blades of a horizontal axis wind turbine lie
in a vertical plane nearly perpendicular to the
mean wind. It is necessary then, to rederive
the results in a form which is compatible with
the wind turbine geometry.

3. DERIVATION OF THE TURBULENCE MODEL

The coordinate definitions used in this paper are

shown in Figure I. In the vacinity of the rotor
disc, the turbulent velocity is expressed local-
ly by the approximation

_i(r;8,t) = vi(t ) + Vi,x(t ) rsinO + Vi,z(t) rcos@

+ higher order terms (3.1

In this approximation, the spatial randomness of
the turbulence is accounted for by the time vary-

ing random quantities Vi(t), Vi,x(t), Vi,z(t) and
higher order terms. While this approximation ap-
pears to be a Taylor series expansion, it is not.
Because of the random nature of the spatial vari-
ations, the samples from the statistical ensemble
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do not have the usual continuity and differentia-
bility properties necessary for a true Taylor ex-
pansion. The expansion, however, can be thought
of as a functional approximation. Here, the ob-
ject is to choose the terms in the expansion so
as to minimize some measure of the approximation
error. When dealing with random functions, a
reasonable error measure is its variance. It will

be understood that convergence of the approxima-
tion series means that the error variance ap-
proaches zero as more and more terms are included.

Convergence in variance further implies that the
series converges in probability (14), i.e.,

Lim Pr{lenI>_} : 0 for all e > 0

where e is the approximation error including only
the nthnorder terms.

At any given time, the terms Vi, Vi,x, and Vi,z
are chosen to minimize the criterion

I )2
= AA I i ' - vi dA (3.2)

where A = rotor disc area
^

v i = Vi ÷ Vi, x rsine + Vi, z rcoso

vi = vi(r,e,t )

The necessary conditions for the minimization are

_a _ 2 ^

i i-v i)dA:o

_Vi,x

_Vi, z

2 ^

A _ (vi - vi) rsinO dA = 0

2 ^

A _ (vi - vi) rcos@ dA : 0

(3.3)

which in turn require that

Vi(t ) = _ _ vi(r'e't)dA

=l
Vi'x(t) l-xx _ vi(r'O't) rsine dA

=I
Vi,z(t) T_z _ vi(r,o,t) rcose dA

where A = _R 2 the disc area

I = I - _R4 the area moments about the
x z 4

x and z axes.

(3.4)

Thus, if the statistics of the turbulence field
are known, then the statistics of Vi, Vi, x and
Vi,z and any higher order terms can be determined.
For example the autocorrelation function for the
uniform, through-the-disc component is expressed
as

a E [Vy(t+T)Vy(t)]RVy(T) -
l

: _ _ E[vy(r'0't+T)Vy(p'_'t)]dAldA2

(3.5)



Using Taylor's hypothesis yields

1

RVy(T) = A-_-_ _ R22(_l,{2,_3)dAldA 2 (3.6)

where _l = rsin8 - psin@

C2 = Vw_

_3 rcose - pcos@

dAI = rdrde

dA2 = pdpd@

and Vw = mean wind speed

In the isotropic case, _2 V2T2

R22(_1,{2,_ 3) = o2[f(_) + ½_f'(_)(_--)] (3.7)

where _2 : _ + _ + _

: r 2 + p2 _ 2rpcos(e-¢) + V2T 2
w

Even for the simple exponential correlation func-
tion

f(_) = e L (3.8)

-- __ i _ z i i

strain rates

(3.9)

it is coubtful that an analytical expression for
RV_(T) exists. Hence, numerical integration pro-
ce_res were employed to perform the required
computations. Details of these procedures are

- found in the Appendix.

_ A_ th is point, it is convenient to rearrange the
- g_adient terms for the in-plane components. This

form is chosen because the resulting terms natu-

rally appear when the velocity is expressed in
components which rotate with the turbine blades.
These terms can be interpreted as local fluid ro-
tations and strain rates. Thus, the following

• terms are defined

= -- Yxz = _Vz,x - Vx,z) swirl

l= + Vx, z)Yxz 12--(Vz,x shear

Cxz = ½(Vz, z - Vx,x) j

Exz : ½(Vz, z ÷ Vx, x) dilation

Typical fluid streamlines giving rise to positive
terms are shown in Figure 2.

Retaining the uniform and gradient terms in the

expanslon results in"the following nine terms
which vary randomly with time: Vx, V,,,Vz, Vv x,

-- . j . js

VW,z, Yxz, YXZ, exz, _xz- The correlatlon sta-
tls_ics of these terms can be computed using
double-area integral expressions similar to
Eq. (3.6)_ Because of the statistical isotropy,

it is easily shown that all nine terms are
mutually uncorrelated. Thus, all second moment

statistics will be determined by the autocorre-
lation functions or the power spectral densities
of the nine terms. Using the scaling parameters
in Table l, nondimensional power spectral density
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curves can be plotted. These curves will be a
one parameter family dependinq on the ratio of
turbine size to turbulence integral scale (R/L).
Example curves are shown in Figures 3 and 4.

Table I. Scaling Parameters for Nondimensional
Curves.

Scaling
Variables Parameter

Turbulent velocity, Vi q

Velocity gradient, Vi, j o/R

Frequency, _ Vw/L

Also shown in Figures 3 and_ are approximate
spectra derived from an exponential autocorrelation
function. These approximate spectra match the
computed spectra at low frequency and have the
same total variance. Stationary, random processes
with exponential autocorrelation functions can be

conveniently represented by stochastic differen-
tial equations of the form :

+ ax = bw (3.10)

where x = random process

w = white noise with flat PSD = q

The autocorrelation function and power spectrum
are

Rx(T)= 2_ alTl (3.11)

Sx(_): a_ (3.12)

respectively, from which the parameters a and b
can be determined

2Rx(O)

a = Sx_ (3.13)

2Rx(O)
b - (3.14)

For the wind turbulence it is convenient to choose

the white noise, power spectral density

o2L
q - (3.15)

Vwg

Nondimensional parameters can thus be defined

a. g ka 2kRx(O)
- Vw- VwSx-(N- (3.16)



b. -_<

Rx(O)
2(T)

i b_ o

R2Rx(O)

RLb 2(o---_-----)

,.--,2.=

•Vw AWR2Sx (0)

Lo2

uniform terms

(3.17)

gradient terms

which will depend only on the ratio R/L. As an
example of the computational procedure, consider

the turbulence component Vy. In this case,

Rx(O) 1
g(_ O) dAlda 2 (3.18)

V T Vw
and VwSx(O) 2 f f f g(_ ,___)dAldA2(z_)dT2 :T0 AA

.2 ,2 2 (3.1g)

VwT _ -VwT

where g(_ , T ) = f(_) + 12-_F'(_)(--_)

= v/r2 + p2 _ 2rpcos(o-@) + V2wT2

dA l = rdrd@

dA2 = pdpd@

and f(.) is the isotropic correlation function.

The results of numerical computations for these
integrals are shown in Figures 5-8 for all of
the turbulence components,

In summary, each of the turbulence terms are
modeled by stochastic differential equations of
the form

_ ax + bw (3.20)

where x = instantaneous value of one of the

terms Vx .... ' Vy,x ..... _xz' etc.

w = nondimensional white noise with power

spectral density q = a2L/V_
V

a = T-_a, (3.21)

_-_2Wb, for uniform terms

b = (3.22)

_Rb, for gradient terms

The nondimensional terms a, and b, are found from
Figures 5-8 as appropriate and depend on the ratio
of turbine size to turbulence scale (R/L). Power

spectral densities can be obtained if desired
from the equation

Sx(_):
a2+_2

(3.23)

4. MODEL ERROR DISCUSSION

Three levels of approximation are introduced in
this paper. In the first, the turbulence is
modeled as locally homogeneous and isotropic with
correlations given by the Von Karman model. This
assumption probably introduces the largest amount
of error in the model. Several authors (15,16)

indicate that the horizontal velocity components
have a variance which is approximately three times
the variance of the vertical component, if we
assume that the turbulent velocity predicted by
the isotropic model has a vertical component which
is 3v_-times too large, but is otherwise statis-
tically correct, then the velocity error magnitude
introduced has a variance

3

-_ E [ z (Gi - vi )2]
i=l

: E [(3¢_-v3 - v3)2]

: (vr_-_ I)2(_ 02 )

: 0.18 02 (4.1)

where o2 = variance of horizontal components.

The second level of approximation occurs in trun-
cating the higher order terms in the spatial expan-
sion. Thus, at any point on the rotor disc, the
turbulent velocity is approximated by

_i(r,o,t):Vi(t)+Vi,x(t)rsin0+Vi,z(t)rcoso (4.2)

Since the velocity component through the rotor,

Vv, produces the greatest aerodynamic force, con-
slder the error variance produced by the approxi-

mation of this component

A

_l(r,O)= _ E[(vy(r,0,t)-Vy(r,o,t)) 2] (4.3)
0

Averaging over the rotor disc gives

Tl " _ _ cl(r'°) dA (4.4)

Using the relations for terms V_(t), V_ x(t) and
V,, z(t) given by Equations 3.4 _ields _e useful
r_ation

_(_y - Vy)Vy dA = 0 (4.5)

and hence
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z_

-- l E[;_]dA- 1 Er yv;dA

 EV/zlC o o
which finally gives

R (0) R2Rv (0) R2Rv (0)

_=l _ I _ 1 y,z- 4 2 -4 2 (4.7)

This quantity can be interpreted as a measure of
the total variance of the part of the turbulent
velocity that is not included in the model. Thus,

t_v#raged error, _I is zero if the approxima-
tion is "perfect",

and _ : 1 if the trivial approximation _y = 0 is

in a similar fashion the quantity _0 can be
defined when only the uniform terms are retained

and _2 when uniform, gradient, and quadratic terms
are retained. Table 2 shows the effect of increas-
ing rotor size relative to the turbulence scale.

Table 2 - Relative Approximation Error Variance

R

i _ = .0] ,044_ ,026, .023

.054(Mod M) .135 .081 .070i

:] i i .1 .201 .121 .I05

.3(Mod G) .397 .250 .218

.5 .527 .348 .304

l.O .724 .527 .465

2.0 .889 .737 .663

Observing the results given in this table, a sig-
nificant improvement is obtained when the gradient
terms are included along with the uniform term.
However, only a small improvement is obtained when
the quadratic terms are also included. This leads
to the conclusion that the unmodeled portion of
the _urLulence is highly disorganized and probably
has a negligible effect on the forces and moments
felt at the hub.

To investigate this effect further, the following
aerodynamic model was assumed for a light, rigid
blade cutting through the turbulent velocity field

3C R

f(t) : _-_ r _ Vy(r,_t,t)dr (4.8)

where f = the net blade force (torque or
thrust deviation from nominal)

C = the aerodynamic influence coef-
ficient

= rotation rate of the rotor

and Vy(r,e,t)__ = instantaneous turbulent velocity.

Note, for a steady, uniform v_ocity, the force is
constant and given by

f = C Vy

Now, let the approximate force be the result of
the uniform and gradient terms in the model. Thus,

3C R

f(t) : _-_ r R2_/_r2 _y(r,£t,t) dr (4.9)

where _y = Vy(t) + Vy,x(t)rsinat + Vy,z(t)rcos_t

Integrating along the blade yields

3_

f(t):C[Vy(t)+_R(Vy,x(t)sin£t+Vy,z(t)cos£t)](4.10)

The relative error variance is given by

El = E[(f - f)2]
Elf 2]

= E[f2] - 2 E[ff] + Elf2] (4.II)

Elf2]

Substituting Equations 4.10 and 4.8 into these
variance terms gives

E[f2]=C2[Rv (O)+(_)3_R2(R V (O)sin2Rt+R v (O)cos2_t)]
y y,x y,z

(4.12)

E_.2, 9C2 R R

Lt ]:RT 0 0f I rP/(R2_r2)(R2_p2 ) R22(_l,O,_3)drdp

(4.13)

where (I = (r-p)sin£t

C3 = (r-p)cos£t

R22(.,-,.) = turbulent velocity correlation
function

E [ff] : C2(I0 + ll) (4.14)

where

3 R

I0 = TR5 _ _ r _ R22(_ l,O,_3)dAdr

9 R

Ii : _R 6 _ A/ r __r p cos (@-_t)R22(( l,O,_3)dAdr

_I = rsinnt - psin@

{3 = rcos_t - pcos@

dA : pdpd¢

The normalized error variance, _0, defined by
neglecting the gradient terms in the approximate
velocity, is determined in a similar way. Table 3
shows the results of these computations
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Table3 - RelativeBladeForceErrorVariance

R E0 El

.Ol .024 .009
.054(ModM) .076 .030

.l .ll6 .046
.3(ModG) .248 .I04

.5 .350 .157
l.O .536 .278
2.0 .753 .488

Comparingtheresultsof Table3andTable2, it
is seenthat onlyhalf theunmodeledvelocityvari-
anceis observedasunmodeledforcevariance.
Thisresult is dueto theaveragingeffectof the
integrationalongtheblade. If the bladewere
morerealistically modeledwith inertia it is ex-
pectedthat little of theremainingunmodeled
variancewouldbetransmittedto thehub.

Thethird levelof approximationinvolvestheuse
of thestochasticdifferential equation(Equation
3.20)to modeltheuniformandgradientturbulence
components.Theaccuracyof this approximation
dependsonhowclosethespectralform

b2
Sx(_):

is to the spectra computed by integration. Figures
3 and 4 show two examples of such a comparison.
The parameters a and b are chosen so that the total
variance and the low frequency spectrum for the
model are correct.

Considering the results of these error calcula-
tions, it is reasonable to expect that the turbu-

lence inputs described statistically by the model
will approximate the effect of the true turbulence
on the wind turbine. Realistic evaluation of the

modeling error, however, can only be accomplished
by comparison with experimental data. It is hoped
that such a comparison can be made in the near
future.

5. AERODYNAMIC FORCE ON ROTATING WIND TURBINE BLADE

As an illustration of how the turbulence interacts

with a rotating turbine blade, consider the pre-
vious example of a rigid blade rotating in the
turbulent velocity field. Using the approximate
turbulence model, the blade force is given by

f(t)=C[Vy(t)+_R(Vy,x(t)sin_t+Vy,z(t)cos_t)] (5.1)

Defining the three components of the dynamic state
vector

xI (t) : Vy(t)

x2(t) cos_t Vy,z(t) + sin_t Vy,x(t) _ (5.2)

x3(t) - sin_t Vy,z(t ) + cos_t Vy,x(t) J
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yields the stochastic differential equations

Xl = - alXl + blWl (5.3)

x2 : - a2x2 ÷ _x3 + b2w2 (5.4)

and x3 = - _x2 - a2x3 + b2w3 (5.5)

Since the original white noise inputs are uncor-
related with identical power spectral densities,

it can be shown that w2 and w3 are also uncor-
related white noise processes with the same power
spectral density. This yields the following matrix
form for the stochastic differential equations

{£} = [A]{x} + [B]{w}
(5.6)

{f} = [C]{x}

where the matrices are given by

-il 0 0 1
[A] = -a2

-_ -a2

[B] : 0 b 2

0 0 b 2
3x

[C] : [C, C T6 R, 0]

(5.7)

Using these equations the output power spectral
density is given by the well known expression (17)

Sf(m) = [H(i_)][Q][HT(-i_)] (5.8)

where the row matrix of transfer functions is
given by

[H(i_)] = [C][i_I - A]-I[B] (5.9)

Since the elements of the noise vector are uncor-

related and have identical power spectral densities

0[Q]: q o

0 q

which gives

(5.1o)

(5.11)
Sf(_) : q[H(i_)][HT(-im)]

: q s IHjk(i_)l2
k

For the case at hand,

3_
Cb1 C -_-R b2(a2_i_)

[H(iw)] = [al-_i_, (a2+i_)2+a 2

and

(Cbl)2q

Sf(_) : --_-T+
al+_

3_

C _ R b2n

' (a2+iw)2+n2 ]

(5.12)

(C I--6-R3_b2)2(a_+a2+ 2)q

(a_+_2+ 2)2_(2am)2 (5.13)



Usingthenon-dimensionaltermsdefinedin Equa-
tions3.16and3.]7yields theresult

b,_ ,3_ , ,2, 2 + _ 2 + 2,VwSf(_) _o, 2) ta,2 _, _, )I

= + 222 2(a,2 + R, + _, ) -(2 _,m,)

(3.14)

where the non-dimensional frequencies are defined
by

÷

: #_ L_ (3.15)
m, -- and _, : Vww

The non-dimensional, power spectral density from
Equation 3_14 is plotted in Figure 9. The para-

= meters for these blades were selected to corres-
_ ]:i_ _ond to two typical wind turbines of vastly dif-

ferent size_ Table 4 provides the key parameters
fo_ _hese two turbines.

Table 4 - Parameters for Typical Wind Turbines

Mod M Mod G

Radius, R (ft) 16.67 150

Rated Power 8 kW 2.5 MW

Winaspeed, Vw (m.p.h.) 16.63 20

Rotation Rate, _ (rpm) 73.35 17.5

Turbulence Scale, L (ft) 300 500

Z

it is clear from Figure 9 that the effect of blade
rotation is to concentrate the variance due to the

turbulence gradient components at a frequency
equa_ the rotation rate. This effect can be under-
stood by considering the blade to be slicing
through a slowly varying velocity gradient. As the
blade encounters the higher velocity on one side
of _he rotor disc the force is increased. As it

moves through 180° the force reaches a minimum
giving a fluctuating force at the rotor frequency.
The importance of this effect can be seen by com-
paring the relative contributions of the uniform
and gradient components to the total variance of
_he blade force. Table 5 shows these results.

Table 5 - Relative Contributions to
Blade Force Variance

Uniform Gradient
Term Terms

Mod M (8 kW) 96% 4%

Mod G (2.5 MW) 85% 15%

Clearly for the larger blade, 15% of the variance
at the relatively high rotor frequency could cause
more fatigue damage than the 85% for the uniform
component at the lower frequencies.

6. CONCLUSIONS

In ti}is paper, we have formulated a theoretical
model for the wind turbulence as it affects hori-
zontal axis wind turbines, The model includes the

effect of variations in the turbulent velocity

across the rotor disc. An indication of the ap-

proximation error in the model has also been given.
It is expected that the model will be useful for

determining how important the different turbulence
effects are for given machine responses. This type
of study has been made in the accompanying paper
(1). While we believe that the model will give
qualitatively correct results, it is important that
experimental verification and any necessary model
adjustments be made before it is used for design

purposes.
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APPENDIX

Numerical Procedures Utilized in Model

Development

A.l Area Integration Over Rotor Disc

Two Gaussian quadrature formulas (18) were

utilized to perform area integrations over
the rotor disc. The distribution of points
is shown in Figure lO and given in Tables 6
and 7.

Table 6 - Sixteen Point Formula

ri Ci

o21132487 .19634954

.78867513 .19634954

Table 7 - Sixty-four Point Formula

r i Ci

.26349923 .03415057

.57446451 .06402420

.81852949 .06402420

.96465961 .03415057

The quadrature formulas have the following
form:

n 4n

f f(r,e)dA = z z Cif(r i
A i=l j=l '%)i

ej = _-n

A six-point formula was also developed to re-
duce the computational load. In this case,
the radius was adjusted until the best match

between computations using the sixty-four-
point formula and the six-point formula was
achieved and resulted in r = 0.69. For all

computations, comparison was made between two

formulas to verify accuracy to within five
percent.
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A.2 Integration Alonq Radius

An eight-point Gaussian quadrature formula
(19) was utilized for radial integrations
where required without angle dependence.

l n

I f(r)dr : s Cif(r i)
o i=l

The weights and absissas are given in Table 8.

Table 8 - Radial quadrature Formula

ri Ci

.0198550717 .0506142681

.I016667612 .llllg05172

.2372337950 .1568533229

.4082826787 .1813418916

.5917173212 .1813418916

.7627662049 .1568533229

.8983332387 .III1905172

.9801449282 .0506142681

A.3 Fourier Transforms

A.4

For calculation of power spectral densities
the Fourier transform defined by

S(m) = f e-imT R(_)dT

was numerically computed from the autocorre-
lation function using the finite approxima-
tion

n -iw.T.
Z K J]-R(o))

S(_k) = _n (2Re[j= 0 R(Tj)e

where mk = (_)k

Tj = (_-n-n)j

The fast Fourier transform techniques of the
IMSL (20) library routine FFTRC were uti-
lized. Several different time intervals were

chosen to give overlapping spectra over the
different frequency decades.

Semi-lnfinite Time Interval

To calculate the zero frequency power spectra,
a Gaussian quadrature formula (21) was uti-
lized.

om

f e_Xf(x)d X n
= 7. Cif(xi)

o i=l

The absissas and weights for the sixteen
points are given in Table 9.
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Table 9 - Semi-lnfinite Interval

Quadrature Formula

xi Ci

.087649 .206152

.46270 .33i05B

1.14106 .265796

2.12928 .136297

3.43709 .473289 E-Of

5.07802 .ll3000 E-O1

7.07034 .184910 E-02

9.43831 .204272 E-03

12.21422 .148446 E-04

15.44153 .682832 E-06

19.18016 .188100 E-07

23.51591 .286235 E-09

28.57873 .212708 E-ll

34.58340 .629797 E-14

41.94045 .505047 E-17

51.70116 .416146 E-21

A.5 Von Karman Correlation Function

Central to all of the previous numerical inte-

gration procedures is the need to compute the
integrand. In this case the integrand will
involve the evaluation of

b _ I/3
f(p) = (_) KI/3(_)

and

g(,) = ½ _f'(P)

where Kl'3(')1 = Modified Bessel function
order of i/3

These functions are evaluated by the subrou-
tine VK developed by Holley and Bryson (22).
The method utilizes spline interpolation and
asymptotic expansion giving a result accurate
to six significant figures Over a wide range
of arguments.

REFERENCES

I. Thresher, R.W., Holley, W.E. and Jafarey, N.,
"Wind Response Characteristics of Horizontal

Axis Wind Turbines," Proc. Second DOE/NASA
Wind Turbine Dynamics Workshop, Cleveland,
Ohio, Feb. 24-26, 1981.

2. Frost, W., Long, B.H. and Turner, R.E.,
Engineering Handbook on the Atmospheric 'Envi-
ronmental Guidelines for Use in Wind Turbine

Generator Development, NASA Technical Paper
1359,'Dec. 1978, p. 4.10-4.42.

3. Powell, D.C. and Connell, J.R., Definition of

Gust Model Concepts and Review of Gust Models,
Battelle, Pacific Northwest Laboratory,
PNL-3138, June 1980, Section 4.



4. Rice,S.O.,"MathematicalAnalysisof Random
Noise,"Bell S_xstemTechnicalJournal, V. 24,
n. I (19_FS_-_-,pp.46-156.

5. Taylor, G.I., "Eddy Motion in the Atmosphere,"

Phil. Trans. of the Royal Soc._ London, .
V-_--_15 (1915), pp. 14-22.

6. Kaimal, J.C., "Turbulence Spectra, Length
Scales and Structure Parameters in the Stable

Surface Layer," Boundary Layer Meteorology,
V. 4 (1973), p. 300.

7. Panofsky, H.A., et. al., "The Characteristics

of Turbulent Velocity Components in the Sur-
face Layer Under Convective Conditions,"

Boundazy__M__et_, V. 11 (1977),
pp. 355-361.

8. Busch, N.E., "The Surface Boundary Layer,"

BoundarLx__L__ze_ Meteorolo__o_Z, V. 4 (1973), pp.
213-240.

9. Batche!or, G.K., The Theory of Homdgeneous
Turbu!ence, Cambridge, Ig53, pp. 169-187.

_ _ I0._ V_n_Karman, TT, "sur la Theorie Statistique

de la Turbulence," Comptes Rendus des Seanies
de l'Academie de Sciences, V. 226 (1948),

= pp. 2108-2111.

II. Kolmogonov, A.N., "The Local Structure of
Turbulence in Incompressible Viscous Fluid

for Very Large Reynolds Numbers,"
Acad. ofScienc_ e, USSR, V. 30 (1941), p. 301.

= i2. Etkin, B., Theory of Flight of Airplanes in
Isotropic Turbulence, AGARD Report 372, 1961.

= 13. Chaik, C_R., et. al., Background Information
_ _ _=_:;;::::;and User Guide for MIL-F-8785 B, AFFDL-TR-69-

....7z, Aug.1_6rg:

14. Melsa, J.L. and Sage, A.P., Estimation Theory

_plications to Communications and Con-
= trol, McGraw-Hill, 1971, p. 35.

15. Panofsky, 1977, loc. cit.

16. Counihan, J., "Adiabatic Atmospheric Boundary
Layers: A Review and Analysis of Data from
the Period 1880-1972," Atmospheric Environ-
ment, V. 9 (1975), pp. 87i-905.

17. Goodwin, G.C. and Payne, R.L., Dynamic System
Identification, Acad. Press., 1977, pp. 229-
232.

18. Pierce, W.H., "Numerical Integration Over the
Planar Annulus," J. Soc, Indust. Appl. Math.,
V. 5 (!957), pp, 66-73.

19. Stroud, A.H. and Secrest, D., "Gaussian Quad-
rature Formulas," Prentice-Hall (1966), p.
256.

20. INSL, Inc., IMSL Library Ref. Manual, 7500
Bellaire Blvd., Houston, TX 77036, p. FFTRC-I.

21. Stroud (1966) loc. cit.

22. Holley, W.E. and Bryson, A.E., Wind Modeling
and LateraiAircraft Control for Automatic

" Dept. of AeronautiEs and Astronautics,
University, SUDAAR #489 (1975), pp.

78-80.

,_s-Nomina! Rotor Disc

I _ _.,__-Turbulent Velocity

__ Component (Vy)

y Mean Wind

/ _--__ Dlrectlon

Figure I: Rotor Disc Coordinates

J
X

Z

X

S> /
Exz

Figure 2: In-Plane Velocity Gradient Terms

109



.1

R2mS(_J_
2o

.01 L . , I I I , I
•I 1 L_ 10

Vw

Figure 3: Dimensionless Spectrum for
Uniform V Turbulence Component

y

.1

.01
, , I , I I i

1 L_ i0

Vw

Figure 4: Dimensionless Spectrum for

Gradient Vy,x Turbulence Component

10

a_

I r

x- Vy

o- Vx & Vz

, j I , i I
.1
.01 .1 R 1

C

Figure 5: Dimensionless Parameter, a, for

Uniform Turbulence Terms

b_

10

I
i _'

.I
.01

x - Vy

o - Vx & Vz

\,

.1 R 1
C

Figure 6: Dimensionless Parameter b. for

Uniform Turbulence Terms

x - Vy,x & Vy,z

100_ O-Yxz

\

a. I__ Exz

"l.ol .I R 1

t-

Figure 7: Dimensionless Parameter a, for

Gradient Turbulence Terms

z_

ii0



I :r .

10

MOD G

•Ol .1 1 I0
L_

Vw

_mensionless S ectrum, fo__r_r

Rotatin Blade Force

MOD M

IO0

_... _6-Point

_-- _'t3

_16- Point

la

8

Figure I0: Unit Circle Point Distribution

for Disc Area Integration

Iii



QUESTIONS AND ANSWERS

W.E. Holley

From: L.P. Rowley

Q: How would you propose verifying your model?

A_ We intend to compare the statistical results predicted by the model with results

gained from a planar anemometer array. This comparison can be accomplished using

results developed in system identification theory. We also would like to compare

model predictions with wind turbine field data.

From: T.E. Base

Q: Does your turbulence model satisfy the conservation equation, i.e., continuity?

A: Yes, the Von Karman correlation function satisfies the constraint imposed by the

continuity equation. To the degree that the model approximates the Von Karman

correlation function, it also satisfies continuity.

From: L. Mirandy

Q:

A:

Is the only spatial effect in your model due to rsin e, rcos e terms (gradients

Vi, x, Vi, z depend only on time) or do you have a spatial correlation like Dr. Sundar?

The spatial variation effect includes only rsine and rcose effects. Other more

disorganized spatial variations are ignored. These higher order terms are the

source of the error discussed in the paper.
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