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1. INTRODUCTION

In order to predict wind turbine response charac-
teristics in the presence of atmospheric turbu-
lence, two major modeling steps are required.
First, the important atmospheric sources for the
force excitations felt by the wind turbine sys-
tem must be identified and characterized. Second,
a dynamic model must be developed which describes
how these excitations are transmitted through the
structure and power train., The goal of this

paper is to establish the first modeling step,
that of guantifying the important excitations due
to the atmospheric turbulence. The dynamic model-
ing of the second step is undertaken in the ac-
companying paper (1).

Fluctiuations in the aerodynamic forces on a wind
turbine blade are generated by the relative motions
cf the air with respect to the blade. These rela-
tive motions are comprised of two parts: the
motions of the blade and the motions of the air.
The motions of the air can further be divided

into the undisturbed turbulent flow and the
“induced flow" due to the presence of the wind
turbine wake. The terms comprising the undisturbed
flow will be characterized in this paper. More
precisely, for a horizontal axis wind turbine,

the aerodynamic forces are determined by the
instantaneous air velocity distribution along

each of the turbine blades. These blades in turn
are rotating through the turbulence field which

is being convected past the turbine rotor disc.

It is thus necessary to characterize the wind
turbulence field by a three-dimensional velocity
vector which varies randomly with time and with
the position in space. A complete statistical
description of this turbulent velocity field re-
quires the determination of all possible joint
probability distributions between different
velecity components at different times and
positions in space., Clearly, such a description
will not be possible without considerable simpii-
fication. The validity of the resulting simpli-
fied model will depend upon a comparison of the
characteristics predicted by the model and those

those observed in actual wind turbine field tests.
In this paper we will describe the assumptions
and the analytical steps used to arrive at the
simplifiad model. In the accompanying paper the
model is used to predict wind turbine response
charactertistics. It is hoped that these results
will be verified in the near future by direct
comparison with the results of actual field tests.

2. MODEL ASSUMPTIONS AND APPROXIMATIONS

The first assumption relates to the type of sta-
tistical information which is necessary to describe
the ret aerodynamic forces and moments acting on
the turbine rotor. Several authors {2,3) have
indicated that the quantities needed for wind
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turbine design can be obtained from the mean and
second-moment statistical characteristics of the
various system responses. For stationary pro-
cesses this information is contained in the mean
and power spectral density. In this type of
analysis, the mean and power spectral density are
characterized by a set of parameters. Rice's
theory (4) for computing the frequency of level
crossings or peaks is then used with the observed
parameter probability densities to obtain the
desired response statistics. In this paper, we
will strive to determine the power spectral
density characteristics of the turbulence. When
they are combined with the machine dynamic model,
we will assume that the resulting response sta-
tistics will be useful for machine design.

The next simplification assumes that the variation
in the turbulent velocity observed at a stationary
point is due primarily to the convection of the
turbulent eddies past the tower. Known as Taylor's
frozen field hypothesis (5), this assumption is
widely used in reducing fixed-tower, wind turbu-
Tence data and correlating these results with

data from spatially separated points (6).

The following assumptions which are often used in
analyses involving aircraft flying through turbu-
lence are more questionable when applied to turbu-
lence observed in the atmospheric boundary layer.
First, when the mean velocity field is subtracted
from the total instantaneous velocity field, the
resulting turbulent velocity is assumed to be
locally homogeneous. Thus, when vertical separa-
tions between points are as large as the disc
diameter, the correlations are not explicitly
height dependent. Second, the field is assumed

to be isotropic for all separations for which it
is homogeneous. The latter assumption is known
not to be precisely correct since the variance of
the vertical component is less than the horizontal
components {(7) and the vertical and downwind com-
ponents are correlated due to the boundary layer
shear of the mean flow (8). However, no model
currently exists for predicting the three-dimen-
sional, nonisOtropic correlations between velocity
components at points separated in space. In the
absence of a better model, the isotropic model will
be used with the understanding that the results
may need adjustment when more complete experimental
results are available.

With the previous assumptions (and assuming in-
compressible flow), Batchelor (9) has shown that
the correlation tensor between velocity components
at spatially separated points has the form

R..(2) = LF(E)6,, + L ef ()05, - )] (2.1)
ij ij 2 ij 2 ’
where Rij('g’) = E[vi(; + ‘;:)VJ.(;)]

v.(x)

i

ith velocity component at positionX
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Ei = ith component of the separation 3
52 4 2 _ 12

E = 1+€2+€3-[£‘

5ij =1 fori=7jand 0 fori#]

f(¢) = longitudinal correlation function

02 = variance of the turbulent velocity

components

Von Karman (10) suggested the form for the longi-
tudinal correlation function

f(e) = b Ky 50 (2.2)
where a = 1.339
b = 0.5925
L = integral scale 8 foo f(g)dg
K]/3(-) = modified Bessel fgnction of order

1/3

This function results in Kolmogorov's (11) -5/3
power law for the inertial subrange in the longi-
tudinal power spectral density.

At this point, a very useful approximation due to
Etkin {12) is introduced. The power of this
approximation is that it separates the computation
of the aerodynamic responses into two tractable
pieces. In the first, the spatial variation of
the turbulence is locally approximated by an ex-
pansion. The various time varying turbulence com-
ponents are then multiplied by standard aerody-
namic influence coefficients to obtain the re-
quired aerodynamic responses. These influence
coefficients are the same as those that would be
computed in the absence of turbulence. The re-
sults of this procedure are extensively used in
atrcraft response calculations for flight through
turbulence (13). The results for the airplane
case, however, cannot be applied directly to the
wind turbine problem because of major differences
in the geometry. The aerodynamic surfaces of an
airplane Tie in a nearly horizontal plane while
the blades of a horizontal axis wind turbine 1ie
in a vertical plane nearly perpendicular to the
mean wind. It is necessary then, to rederive

the results in a form which is compatible with
the wind turbine geometry.

3. DERIVATION OF THE TURBULENCE MODEL

The coordinate definitions used in this paper are
shown in Figure 1. 1In the vacinity of the rotor
disc, the turbulent velocity is expressed local-
1y by the approximation

vilrie,t) = V.(t) + Vi,x(t) rsing + Vi,z(t) rcoss

+ higher order terms (3.1)
In this approximation, the spatial randomness of

the turbulence is accounted for by the time vary-
ing random quantities Vi(t), Vi x(t), Vi ,{(t) and
higher order terms. While this approximation ap-
pears to be a Taylor series expansion, it is not.

Because of the random nature of the spatial vari-
ations, the samples from the statistical ensemble
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do not have the usual continuity and differentia-
bility properties necessary for a true Taylor ex-
pansion. The expansion, however, can be thought
of as a functional approximation. Here, the ob-
ject is to choose the terms in the expansion so
as to minimize some measure of the approximation
error. When dealing with random functions, a
reasonable error measure is its variance. It will
be understood that convergence of the approxima-
tion series means that the error variance ap-
proaches zero as more and more terms are included.
Convergence in variance further implies that the
series converges in probability (14), i.e.,

Lim Pr{fe |>e} =0 forall e>0

n-co
where e is the approximation error including only
the nth'order terms.

At any given time, the terms Vi, Vi, x, and Vi,z
are chosen to minimize the criterion

_1 » 2
€ =3 Af ;(Vi - vi) dA (3.2)
i
where A = rotor disc area
vi T Vi + Vi,x rsing + Vi,z rcoso
Vi = vi(r,e,t)

The necessary conditions for the minimization are

3e 2 .
= =%/ {v.,-v,)dA =0
BVi A Aol i
3 2 ~ .
=3xS {v. - v,) rsina dA = 0 (3.3)
avi,x A Ao i
3c 2 ~
=5 S (v, - v,) rcosea dA = 0
BVT,Z A Aol i
which in turn require that
1
Vi(t) =z I vi(r,e,t)dA
A
V, (t) = s v.(r,6,t) rsing dA (3.4)
T,% I i
X A
_ 1
V]’Z(t) =T ! vi(r,e,t) rcose dA
z A
where A = wRZ the disc area
4
IX = IZ = 3%—- the area moments about the

x and z axes.

Thus, if the statistics of the turbulence field
are known, then the statistics of Vi, Vi x and
Vi,z and any higher order terms can be determined.
For example the autocorrelation function for the
uniform, through-the-disc component is expressed
as

(t+T)Vy(t)]
E[vy(r,e,t+r)vy(o,¢,t)]dA]dA2
(3.5)



Using Taylor's hypothesis yields
1
Ry (1) = =5 [ J Ryy(€,6,,E3)dA dA (3.6)
Vy A2 A A 2215125205371

whare %1 = rsing - psing
52 = VwT
£3 = rcos8 - pcosd
dA] = rdrdd
dA, = pdpdg
and Vw = mean wind speed
In the isotropic case,
2 1 e-vixt
2 2 2 2 E
where & = 51 + 52 + £3
2 2 2.2

W

r© + p° - 2rpcos(e-¢) + Vwr

Even for the simple exponential correlation func-
tion £

L (3.8)

flg) =e
i* is coubtful that an analytical expression for
Ry {t) exists. Hence, numerical integration pro-
cedures were employed to perform the required
computations. Details of these procedures are
o found in the Appendix.

At this point, it is convenient to rearrange the
. gradient terms for the in-plane components. This
— - farm is chosen because the resulting terms natu-
: rally appear when the velocity is expressed in

components which rotate with the turbine blades.
— These terms can be interpreted as local fluid ro-

tatiens and strain rates. Thus, the following
T _ .. terms are defined

1
. Eﬂvz,x - Vx,z) swirl

- 1
Yoo =30V, t V)
Xz 2%°2,%  X.Z'% ghear strain rates( )
=1 3.9
Exz ~ Z(Vz,z - vx,x)

£
X2

Tyrical fluid streamlines giving rise to positive
L terms are shown in Figure 2.

1 v
= 2(Vz,z £ Vx,x) dilation

Retaining the uniform and gradient terms in the
expansion results im the following nine terms
which vary randomly with time: Vy, Vy, V7, Vy x,
Vy,zs Yxz» Yxzs €xz> €xz- The correlation sta-
tistics of these terms can be computed using
double-area integral expressions similar to

Eq. {3.6). Because of the statistical isotropy,
it is easily shown that all nine terms are
mutually uncorrelated. Thus, all second moment
statistics will be determined by the autocorre-
Jation functions or the power spectral densities
of the nine terms. Using the scaling parameters
in Table 1, nondimensional power spectral density

1063

curves can be plotted. These curves will be a
one parameter family depending an the ratio of
turbine size to turbulence integral scale (R/L).
Example curves are shown in Figures 3 and 4.

Table 1. Scaling Parameters for Nondimensional

Curves.,
Scaling
Variables Parameter
Turbulent velocity, Vi g
Velocity gradient, Vi j a/R
¥
Frequency, w Vw/L

Also shown in Figures 3 and & are approximate
spectra derived from an exponential autocorrelation
function. These approximate spectra match the
computed spectra at low frequency and have the

same total variance. Stationary, random processes
with exponential autocorrelation functions can be
conveniently represented by stochastic differen-
tial equations of the form Coom T

x + ax = bw (3.10)

where x = random process

w = white noise with flat PSD = q

The autocorrelation function and power spectrum
are

b%q zalx| |
R (1) = 3@ (3.11)
b2
S, (w) = —§~97 (3.12)
a tw

respectively, from which the parameters a and b
can be determined

) ZRX(O)
a —W (3.]3)
2RX(0)
b = (3.14)
q X

For the wind turbulence it is convenient to choose
the white noise, power spectral density

2
q - %—% (3.15)
w
Nondimensional parameters can thus be defined
. La_ 2LRX(O)
% = Vw = 7;5;(57 (3.16)



R (0)

. 2(X—)
L—%-= —39 — uniform terms
v /NS (07
W WX
Lo
b
2(—5—)
,%L% =9 gradient terms
L\w /OWRZSX(O)
e

Lo

which will depend only on the ratio R/L. As an
example of the computational procedure, consider
the turbulence component Vy. In this case,

R (0)
X | £
= IS g(#, 0) dA dA (3.18)
02 ;7 AA 2
and V.S (0) S V1
WX 2 £ W'
— == [ S S g(—-,‘———JdA dA ( )dT
li° Ao AA b7t
V 2 22 (3.19)
3 T " £ -Vwr
where g(g , ) = f(£) + 3¢ (a)(—?-—)

E= /;T+ p? - 2rpcos(8-¢) + Vgr

dA] = rdrd6
dA2 = pdpdd
and f{+) is the isotropic correlation function.

The results of numerical computations for these
integrals are shown in Figures 5-8 for all of
the turbulence components.’

In summary, each of the turbulence terms are
modeled by stochastic differential equations of
the form

X = ax + bw {3.20)
where x = instantaneous value of one of the
terms V s eee s Vy x? reer Yygo etc.

w = nondimensional white ngise with power
spectral density q = L/V

a=Ya, (3.21)

— e =<
=51

by for uniform terms

b={, (3.22)

f% b, for gradient terms
The nondimensional terms a, and b, are found from
Figures 5-8 as appropriate and depend on the ratio
of turbine size to turbulence scale (R/L). Power
spectral densities can be obtained if desired

from the equation

=~
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2
S (w) = _-ELTT (3.23)
a tw

4. MODEL ERROR DISCUSSION

Three Tevels of approximation are introduced in
this paper. In the first, the turbulence is
modeled as locally homogeneous and isotropic with
correlations given by the Von Karman model. This
assumption probably introduces the largest amount
of error in the model. Several authors (15,16)
indicate that the horizontal velocity components
have a variance which is approximately three times
the variance of the vertical component. If we
assume that the turbulent velocity predicted by
the isotropic model has a vertical component which
is /3 times too large, but is otherwise statis-
tically correct, then the velocity error magnitude
introduced has a variance

>

EL § (v - v1-)2]

i=1

E [(/3 vy - v5)]

(3 - 135 o))

0.18 o° (4.1)

where 02 = variance of horizontal components.

The second Tevel of approximation occurs in trun-
cating the higher order terms in the spatial expan-
sion. Thus, at any point on the rotor disc, the
turbulent velocity is approximated by

Qi(r,e,t)=vi(t)+vi’x(t)rsine+vi’z(t)rqose (4.2)

Since the velocity component through the rotor,
Vi, produces the greatest aerodynamic force, con-
s‘Yder the error variance produced by the approxi-
mation of this component

(o) EL(Y, (r0,t)-v (r,0,6)%]  (4.3)

Averaging over the rotor disc gives

ERE, ! eq(r,0) dA (4.4)
Usin the relations for terms V,(t), V, ,(t) and
? ) given by Equations 3.4 yields ¥ﬁe useful
rg fation
V. -v. . dA =0 4.5
f\(Yy vy (4.5)
and hence

wromeow

e

NI



tion is

1 ~2 1 .
———-f E[v,JdA - — s E[V v JdA
A Y RS A VY

Ll

V- Evdy - 2 v 3 s e[V, 21(4.6)
e A Y A T

1

whick fiaally gives

R, (0) _RR, (0)
1 1_ y,z
2 4 2 4 2

a a o

{(4.7)

This quantity can be interpreted as a measure of

the total variance of the part of the turbulent

velocity that is not included in the model. Thus,

the cveraged error, e] is zero if the approxima-
"perfect",

= 1 if the trivial approximation ﬁy = 0 is

in a similar fashion the quantity =g can be
defined when only the uniform terms are retained
and Tp when uniform, gradient, and quadratic terms
are retained. Table 2 shows the effect of increas-
ing rotor size relative to the turbulence scale.

Table 2 - Relative Approximation Error Variance

R —_ _ —_

jfw €0 " €2
- .01 .044 026 .023
054(Mod M) .135 .081 .070
C .201 121 105
3(Mod G)  .397  .250 .218
.5 .527 .348 .304
1.0 .724 527 .465
2.0 .889 .737 .663

Observing the results given in this table, a sig-
nificant improvement is obtained when the gradient
terms are included along with the uniform term.
However, only a small improvement is obtained when
the quadratic terms are also included. This leads
to the conclusion that the unmodeled portion of
the turbulence is highly disorganized and probably
nas a negligible effect on the forces and moments
felt at the hub.

To investigate this effect further, the following
aerodynamic model was assumed for a light, rigid
blade cutting through the turbulent velocity field

w

R
Lir FZT v (rat,thdr
RS 0

f(t) = {(4.8)

the net blade force (torque or
thrust deviation from nominal)
the aerodynamic influence coef-
ficient

rotation rate of the rotor
instantaneous turbulent velocity.

W
=
T
-3
(7]
o |
i} i

([}

Q
and v (r,o,t
y( )

10

Note, for a steady, uniform velocity, the force is
constant and given by

Now, let the approximate force be the result of

the uniform and gradient terms in the model. Thus,
- 3 R .
f(t) = =/ JRZ r2 v (r,at,t) dr (4.9)
R° 0 - Y
o + .
where vy Vy(t) Vy’x(t)rs1nnt + Vy,z(t)rcosﬂt

Integrating along the blade yields

%(t)=C[Vy(t)+%%~R(Vy’x(t)sinﬂt+Vy’Z(t)cosﬂt)](4.10)

The relative error variance is given by

s 2
g = __(_H_JE[ ;[; f)
1
_E[F%] - 2 E[Ff] + E[f?]

E[F4]

Substituting Equations 4.10 and 4.8 into these
variance terms gives

(4.11)

e(73=c0R, (01 (AR, (O)sinatsry (0)cosar)]

y YsX
(4.12)
2 RR
Vr______________
L1 1 o ) (RD) RaalEr 008)trde
(4.13)
where £y = (r-p)sinqt
g3 = (r-p)cosqt
Ras{*s*s*) = turbulent velocity correlation
22 f .
unction
E[FF] = (1, + 1)) (4.14)
where
R
3
I.=——%/7fr /_?—_?ER (E ,0,£, )dAdr
0 TrRS 0A R™-r 1 3
9 R
I] =—JIr “R r2 p cos (¢- Qt)R22(£1,0 ga)dAdr
4R 0 A
g = rsinat - psing

€5 = rcosat - pcos¢

dA

pdpdé

The normalized error variance, eg, defined by
neglecting the gradient terms in the approximate
velocity, is determined in a similar way. Table 3
shows the results of these computations



Table 3 - Relative Blade Force Error Variance

2 £ €
.01 .024 .009
.054(Mod M) .076 .030
1 116 046
3(Mod G)  .248 104
5 350 157
1.0 536 278
2.0 753 488

Comparing the results of Table 3 and Table 2, it

is seen that only half the unmodeled velocity vari-
ance 1s observed as unmodeled force variance.

This result is due to the averaging effect of the
integration along the blade. If the blade were
more realistically modeled with inertia it is ex-
pected that little of the remaining unmodeled
variance would be transmitted to the hub.

The third level of approximation involves the use
of the stochastic differential equation (Equation
3.20) to model the uniform and gradient turbulence
components. The accuracy of this approximation
depends on how close the spectral form

2
)+ oy

a tuw

is to the spectra computed by integration. Figures
3 and 4 show two examples of such a comparison.

The parameters a and b are chosen so that the total
variance and the low frequency spectrum for the
model are correct.

Considering the results of these error calcula-
tions, it is reasonable to expect that the turbu-
lence inputs described statistically by the model
will approximate the effect of the true turbulence
on the wind turbine. Realistic evaluation of the
modeling error, however, can only be accomplished
by comparison with experimental data. It is hoped
that such a comparison can be made in the near
future.

5. AERODYNAMIC FORCE ON ROTATING WIND TURBINE BLADE

As an illustration of how the turbulence interacts
with a rotating turbine blade, consider the pre-
vious example of a rigid blade rotating in the
turbulent velocity field. Using the approximate
turbulence model, the blade force is given by

f(t)=c[vy(t)+§l R(V

T (t)sin9t+Vy’Z(t)cosﬂt)] (5.1)

YaX

Defining the three components of the dynamic state
vector

X (8) = v (8)
xz(t) = cosat Vy,z(t) + sinot vy,x(t) (5.2)
x3(t) = - sinqt Vy,z(t) + cosat Vy,x(t)

yields the stochastic differential equations

Xp = - agxy * b]w] (5.3)
Xp = = ayX, + axy + b2w2 (5.4)
and X3 = = AXy - A,y t b2w3 (5.5)

Since the original white noise inputs are uncor-
related with identical power spectral densities,

it can be shown that wy and w3 are also uncor-
related white noise processes with the same power
spectral density. This yields the following. matrix
form for the stochastic differential equations

{x} = [Al{x} + [B]{w}
(5.6)
{f} = [C]{x}
where the matrices are given by
-3y 0 0 )
[A] = 0 -a, Q
) -2 -a,
r b] 0 0 7 (5.7)
[B] = 0 b2 0
L0 0 b2_
[c] = [c, C3FR, 0] J

Using these equations the output power spectral
density is given by the well known expression (17)

Se(w) = [H(1)ILQIHT (~iw)] (5.8)

where the row matrix of transfer functions is
given by

[H(iw)] = [CI[ial - AT"'[B] (5.9)

Since the elements of the noise vector are uncor-
related and have identical power spectral densities

q 0 0
Q1= o0 q 0 (5.10)
0 0

which gives

Sf(w)

q[H(iw) I[H (-iw)]

2 (5.11)
= a Iyl

For the case at hand,

3n . 3
Cb € 3= R b, (a,tiw) C R b,0
[H(iw)] = [ 1 16 272 16 2

ay o’ (a2+1m)2+92 ’ (az+iw)2+ﬂ2
] (5.12)
an
(cb))% (€ 3 R by)2(abrarl)q
Splo) =t (5.13)
aytw (32+Q + ) - (20w)

oo

omryomon
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Using the non-dimensional terms defined in Equa-
ticns 3.16 and 3.17 yields the result

2 3 2 2 2
szf((ﬂ) _ _e,b,*] . (T‘g‘ *2) (a*z + 0,7+ w,")
c?sL a,_;-lzhu*2 (a*g + Q*2+ 2)2-(2 Q*w*)z
N (3.14)

where the non-dimensional frequencies are defined
by

- _ Lw _La

wg = v and Q, = g

vw vw

(3.15)

The non-dimensional, power spectral density from
Equation 3.14 is plotted in Figure 9. The para-
meters for these blades were selected to corres-
pord to two typical wind turbines of vastly dif-
n Table 4 provides the key parameters
r these two turb1nes :

Table 4 - Parameters for Txp1ca1 Wind Turbines

o Mod M Mod G
Radius, R (ft) 16.67 150
Rated Power 8 ki 2.5 MW
Windspeed, Vw {m.p.h.) 16.63 20
Rotation Rate, @ (rpm) 73.35 17.5
Turbulence Scale, L {ft) 300 500

it is clear from Figure 9 that the effect of blade
rotation is to concentrate the variance due to the
turbulence gradient components at a frequency

equal the rotation rate. This effect can be under-
stood by considering the blade to be slicing
through a slowly varying velocity gradient. As the
blade encounters the higher velocity on one side
of the rotor disc the force is increased. As it
moves through 180° the force reaches a minimum
giving a fluctuating force at the rotor frequency.
The importance of this effect can be seen by com-
paring the relative contributions of the uniform
and gradient components to the total variance of
the blade force. Table 5 shows these results.

Table b - Relative Contributions to
Blade Force Variance

Uniform Gradient

Term Terms
Mod M {8 kW) 96% 4%
Mod G (2.5 MW) 85% 15%

{learly for the larger blade, 15% of the variance
at the relatively high rotor frequency could cause
more fatigue damage than the 85% for the uniform
componept at the lower frequencies.

6. CONCLUSIONS

In this paper, we have formulated a theoretical
model for the wind turbulence as it affects hori-
zontal axis wind turbines. The model includes the
effect of variations in the turbulent velocity
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across the rotor disc. An indication of the ap-
proximation error in the model has also been given.
It is expected that the model will be useful for
determining how important the different turbulence
effects are for given machine responses. This type
of study has been made in the accompanying paper
{1). While we believe that the model will give
qualitatively correct results, it is important that
experimental verification and any necessary model
adjustments be made before it is used for design
purposes. '
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APPENDIX

Numerical Procedures Utf]iied in Model
Development

A.1 Area Integration Over Rotor Disc

Two Gaussian quadrature formulas (18) were
utilized to perform area integrations over
the rotor disc. The distribution of points
is shown in Figure 10 and given in Tables 6
and 7.

Table 6 - Sixteen Point Formula

r C1
.21132487 .19634954
.78867513 .19634954

Table 7 - Sixty-four Point Formula

r. C.
i i
.26349923 .03415057
.57446451 .06402420
.81852949 .06402420
.96465961 .03415057
The quadrature formulas have the following
form:
n 4n
f f(r,e}dA= ¢ ¢ C, f(r ,e )
A i=1 j=1

m

0 = 7%

A six-point formula was also developed to re-
duce the computational load. In this case,
the radius was adjusted until the best match
between computations using the sixty-four-
point formula and the six-point formula was
achieved and resulted in r = 0.69. For all
computations, comparison was made between two
formulas to verify accuracy to within five
percent.




A.2

A.3

Al

Integration Along Radius

An eight-point Gaussian quadrature formula
(19) was utilized for radial integrations
where required without angle dependence.

1 n
J f(r)dr = ¢
o =

The weights and absissas are given in Table 8,

Table 8 - Radial Quadrature Formula

ry C1
.0198550717 .0506142681
.1076667612 .1111905172
.2372337950 .1568533229
.4082826787 . 1813418916
.5917173212 .1813418916
.7627662049 .1568533229
.8983332387 .1111905172
. 9801449282 .0506142681

Fourier Transforms

For calculation of power spectral densities
the Fourier transform defined by

A P
S{lw) = S e R(t)dt

was numerically computed from the autocorre-

Tation function using the finite approxima-
tion

T n -‘imk'r.
S(w) = 77 (2Rel T R(ry)e  © JI-R(0))
§=0

2n
where o, = (= )k
k T(n+1)
Y
Tj = (zn)J

The fast Fourier transform techniques of the
IMSL (20) library routine FFTRC were uti-
Tized. Several different time intervals were
chosen to give overlapping spectra over the
different frequency decades.

Semi-Infinite Time Interval

To calculate the zero frequency power spectra,
a Gaussian quadrature formula (21) was uti-
Tized.

H

m_x n
S e “f(x)dx I Cif(xi)
0 i=1

The absissas and weights for the sixteen
points are given in Table 9.
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Table 9 - Semi-Infinite Interval
Quadrature Formula

X C.

1 3
.087649  .206152
.46270 .331058

1.14106 .265796
2.12928 136297
3.43709 .473289 E-01
5,07802 .113000 E-01
7.07034 .184910 E-02
9.43831 .204272 E-03
12.21422 .148446 E-04
15.44153 .682832 E-06
19.18016 .188100 E-07
23.51591 .286235 E-09
28.57873 .212708 E-11
34.58340 .629797 E-14
41.94045 .505047 E-17

51.70116 .416146 E-21

A.5 Von Karman Correlation Function

Central to all of the previous numerical inte-
gration procedures is the need to compute the
integrand. In this case the integrand will
involve the evaluation of

= pyl/3 u
flu) = b(3)7 7K 303
and

g(u) = 3 uf' ()

where K]/3(-) = Modified Bessel function
order of 1/3

These functions are evaluated by the subrou-

tine VK developed by Holley and Bryson (22).

The method utilizes spline interpolation and

asymptotic expansion giving a result accurate
to six significant figures over a wide range

of arguments.
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Figure 3: Dimensionless Spectrum for
Uniform Vy Turbulence Component

Figure 4: Dimensionless Spectrum for
Gradient Vy % Turbulence Component
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= 8: Dimensionless Parameter b, for
1t TurbuTence Terms

Figure 9: Dimensionless Spectrum for
Rotating Blade Force
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QUESTIONS AND ANSWERS

W.E. Holley

From: L.P. Rowley

Q: How would you propose verifying your model?

A: We intend to compare the statistical results predicted by the model with results
gained from a planar anemometer array. This comparison can be accomplished using
results developed in system identification theory. We also would like to compare
model predictions with wind turbine field data.

From: T.E. Base

Q: Does your turbulence model satisfy the conservation equation, i.e., continuity?

A Yes, the Von Karman correlation function satisfies the congtraint imposed by the
continuity equation. To the degree that the model approximates the Von Karman
eorvelation funetion, it also satisfies continuity.

From: L. Mirandy

Q: Is the only spatial effect in your model due to rsin 8, rcos 6 terms (gradients
Vi ok Vi g depend only on time) or do you have a spatial correlation like Dr. Sundar?
1 1
A: The spatial variation effeet includes only reind® and rcos® effects. Other more

disorganized spatial variations are ignored. These higher order terms are the
source of the error discussed in the paper.
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