3,034 research outputs found

    Testing Co-Volatility Spillovers for Natural Gas Spot, Futures and ETF Spot using Dynamic Conditional Covariances

    Get PDF
    There is substantial empirical evidence that energy and financial markets are closely connected. As one of the most widely-used energy resources worldwide, natural gas has a large daily trading volume. In order to hedge the risk of natural gas spot markets, a large number of hedging strategies can be used, especially with the rapid development of natural gas derivatives markets. These hedging instruments include natural gas futures and options, as well as Exchange Traded Fund (ETF) prices that are related to natural gas stock prices. The volatility spillover effect is the delayed effect of a returns shock in one physical, biological or financial asset on the subsequent volatility or co-volatility of another physical, biological or financial asset. Investigating volatility spillovers within and across energy and financial markets is a crucial aspect of constructing optimal dynamic hedging strategies. The paper tests and calculates spillover effects among natural gas spot, futures and ETF markets using the multivariate conditional volatility diagonal BEKK model. The data used include natural gas spot and futures returns data from two major international natural gas derivatives markets, namely NYMEX (USA) and ICE (UK), as well as ETF data of natural gas companies from the stock markets in the USA and UK. The empirical results show that there are significant spillover effects in natural gas spot, futures and ETF markets for both USA and UK. Such a result suggests that both natural gas futures and ETF products within and beyond the country might be considered when constructing optimal dynamic hedging strategies for natural gas spot prices

    Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice

    Get PDF
    Energy and agricultural commodities and markets have been examined extensively, albeit separately, for a number of years. In the energy literature, the returns, volatility and volatility spillovers (namely, the delayed effect of a returns shock in one asset on the subsequent volatility or covolatility in another asset), among alternative energy commodities, such as oil, gasoline and ethanol across different markets, have been analysed using a variety of univariate and multivariate models, estimation techniques, data sets, and time frequencies. A similar comment applies to the separate theoretical and empirical analysis of a wide range of agricultural commodities and markets. Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol, which is derived from a range of agricultural products, it is not surprising that there is a topical and developing literature on the spillovers between energy and agricultural markets. Modelling and testing spillovers between the energy and agricultural markets has typically been based on estimating multivariate conditional volatility models, specifically the Baba, Engle, Kraft, and Kroner (BEKK) and dynamic conditional correlation (DCC) models. A serious technical deficiency is that the Quasi-Maximum Likelihood Estimates (QMLE) of a Full BEKK matrix, which is typically estimated in examining volatility spillover effects, has no asymptotic properties, except by assumption, so that no valid statistical test of volatility spillovers is possible. Some papers in the literature have used the DCC model to test for volatility spillovers. However, it is well known in the financial econometrics literature that the DCC model has no regularity conditions, and that the QMLE of the parameters of DCC has no asymptotic properties, so that there is no valid statistical testing of volatility spillovers. The purpose of the paper is to evaluate the theory and practice in testing for volatility spillovers between energy and agricultural markets using the multivariate Full BEKK and DCC models, and to make recommendations as to how such spillovers might be tested using valid statistical techniques. Three new definitions of volatility and covolatility spillovers are given, and the different models used in empirical applications are evaluated in terms of the new definitions and statistical criteria

    Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice

    Get PDF
    Energy and agricultural commodities and markets have been examined extensively, albeit separately, for a number of years. In the energy literature, the returns, volatility and volatility spillovers (namely, the delayed effect of a returns shock in one asset on the subsequent volatility or covolatility in another asset), among alternative energy commodities, such as oil, gasoline and ethanol across different markets, have been analysed using a variety of univariate and multivariate models, estimation techniques, data sets, and time frequencies. A similar comment applies to the separate theoretical and empirical analysis of a wide range of agricultural commodities and markets. Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol, which is derived from a range of agricultural products, it is not surprising that there is a topical and developing literature on the spillovers between energy and agricultural markets. Modelling and testing spillovers between the energy and agricultural markets has typically been based on estimating multivariate conditional volatility models, specifically the Baba, Engle, Kraft, and Kroner (BEKK) and dynamic conditional correlation (DCC) models. A serious technical deficiency is that the Quasi-Maximum Likelihood Estimates (QMLE) of a Full BEKK matrix, which is typically estimated in examining volatility spillover effects, has no asymptotic properties, except by assumption, so that no valid statistical test of volatility spillovers is possible. Some papers in the literature have used the DCC model to test for volatility spillovers. However, it is well known in the financial econometrics literature that the DCC model has no regularity conditions, and that the QMLE of the parameters of DCC has no asymptotic properties, so that there is no valid statistical testing of volatility spillovers. The purpose of the paper is to evaluate the theory and practice in testing for volatility spillovers between energy and agricultural markets using the multivariate Full BEKK and DCC models, and to make recommendations as to how such spillovers might be tested using valid statistical techniques. Three new definitions of volatility and covolatility spillovers are given, and the different models used in empirical applications are evaluated in terms of the new definitions and statistical criteria

    Modelling Volatility Spillovers for Bio-ethanol, Sugarcane and Corn Spot and Futures Prices

    Get PDF
    The recent and rapidly growing interest in biofuel as a green energy source has raised concerns about its impact on the prices, returns and volatility of related agricultural commodities. Analyzing the spillover effects on agricultural commodities and biofuel helps commodity suppliers hedge their portfolios, and manage the risk and co-risk of their biofuel and agricultural commodities. There have been many papers concerned with analyzing crude oil and agricultural commodities separately. The purpose of this paper is to examine the volatility spillovers for spot and futures returns on bio-ethanol and related agricultural commodities, specifically corn and sugarcane. The diagonal BEKK model is used as it is the only multivariate conditional volatility model with well-established regularity conditions and known asymptotic properties. The daily data used are from 31 October 2005 to 14 January 2015. The empirical results show that, in 2 of 6 cases for the spot market, there were significant negative co-volatility spillover effects: specifically, corn on subsequent sugarcane co-volatility with corn, and sugarcane on subsequent corn co-volatility with sugarcane. In the other 4 cases, there are no significant co-volatility spillover effects. There are significant positive co-volatility spillover effects in all 6 cases, namely between corn and sugarcane, corn and ethanol, and sugarcane and ethanol, and vice-versa, for each of the three pairs of commodities. It is clear that the futures prices of bio-ethanol and the two agricultural commodities, corn and sugarcane, have stronger co-volatility spillovers than their spot price counterparts. These empirical results suggest that the bio-ethanol and agricultural commodities should be considered as viable futures products in financial portfolios for risk managemen

    Industrial Penetration and Internet Intensity

    Get PDF
    This paper investigates the effect of industrial penetration and internet intensity for Taiwan manufacturing firms, and analyses whether the relationships are substitutes or complements. The sample observations are based on 153,081 manufacturing plants, and covers 26 two-digit industry categories and 358 geographical townships in Taiwan. The Heckman selection model is used to accommodate sample selectivity for unobservable data for firms that use the internet. The empirical results from two-stage estimation show that: (1) a higher degree of industrial penetration will not affect the probability that firms will use the internet, but will affect the total expenditure on internet intensity; (2) for two-digit industries, industrial penetration generally decreases the total expenditure on internet intensity; and (3) industrial penetration and internet intensity are substitutes

    A Statistical Analysis of Industrial Penetration and Internet Intensity in Taiwan

    Get PDF
    This paper investigates the effect of industrial penetration (geographic concentration of industries) and internet intensity (the proportion of enterprises that use the internet) for Taiwan manufacturing firms, and analyses whether the relationships are substitutes or complements. The sample observations are based on 153,081 manufacturing plants, and covers 26 two-digit industry categories and 358 geographical townships in Taiwan. The Heckman selection model is used to accommodate sample selectivity for unobservable data for firms that use the internet. The empirical results from two-stage estimation show that: (1) a higher degree of industrial penetration will not affect the probability that firms will use the internet, but will affect the total expenditure on internet intensity; (2) for two-digit SIC industries, industrial penetration generally decreases the total expenditure on internet intensity; and (3) industrial penetration and internet intensity are substitutes

    The State of Self-Organized Criticality of the Sun During the Last 3 Solar Cycles. I. Observations

    Full text link
    We analyze the occurrence frequency distributions of peak fluxes PP, total fluxes EE, and durations TT of solar flares over the last three solar cycles (during 1980--2010) from hard X-ray data of HXRBS/SMM, BATSE/CGRO, and RHESSI. From the synthesized data we find powerlaw slopes with mean values of αP=1.72±0.08\alpha_P=1.72\pm0.08 for the peak flux, αE=1.60±0.14\alpha_E=1.60\pm0.14 for the total flux, and αT=1.98±0.35\alpha_T=1.98\pm0.35 for flare durations. We find a systematic anti-correlation of the powerlaw slope of peak fluxes as a function of the solar cycle, varying with an approximate sinusoidal variation αP(t)=α0+Δαcos[2π(tt0)/Tcycle]\alpha_P(t)=\alpha_0+\Delta \alpha \cos{[2\pi (t-t_0)/T_{cycle}]}, with a mean of α0=1.73\alpha_0=1.73, a variation of Δα=0.14\Delta \alpha =0.14, a solar cycle period Tcycle=12.6T_{cycle}=12.6 yrs, and a cycle minimum time t0=1984.1t_0=1984.1. The powerlaw slope is flattest during the maximum of a solar cycle, which indicates a higher magnetic complexity of the solar corona that leads to an overproportional rate of powerful flares.Comment: subm. to Solar Physic

    Modelling the Effects of Oil Prices on Global Fertilizer Prices and Volatility

    Get PDF
    The main purpose of this paper is to evaluate the effect of crude oil price on global fertilizer prices in both the mean and volatility. The endogenous structural breakpoint unit root test, ARDL model, and alternative volatility models, including GARCH, EGARCH, and GJR models, are used to investigate the relationship between crude oil price and six global fertilizer prices. The empirical results from ARDL show that most fertilizer prices are significantly affected by the crude oil price while the volatility of global fertilizer prices and crude oil price from March to December 2008 are higher than in other periods

    Electroweak Radiative Corrections to Parity-Violating Electroexcitation of the Δ\Delta

    Get PDF
    We analyze the degree to which parity-violating (PV) electroexcitation of the Δ(1232)\Delta(1232) resonance may be used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast to the situation for elastic electron scattering, the axial NΔN\to\Delta PV asymmetry does not vanish at the photon point as a consequence of a new term entering the radiative corrections. We argue that an experimental determination of these radiative corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara's theorem in weak, radiative hyperon decays.Comment: RevTex, 76 page
    corecore