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Abstract: Energy and agricultural commodities and markets have been examined extensively, albeit
separately, for a number of years. In the energy literature, the returns, volatility and volatility
spillovers (namely, the delayed effect of a returns shock in one asset on the subsequent volatility
or covolatility in another asset), among alternative energy commodities, such as oil, gasoline and
ethanol across different markets, have been analysed using a variety of univariate and multivariate
models, estimation techniques, data sets, and time frequencies. A similar comment applies to the
separate theoretical and empirical analysis of a wide range of agricultural commodities and markets.
Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol, which is
derived from a range of agricultural products, it is not surprising that there is a topical and developing
literature on the spillovers between energy and agricultural markets. Modelling and testing spillovers
between the energy and agricultural markets has typically been based on estimating multivariate
conditional volatility models, specifically the Baba, Engle, Kraft, and Kroner (BEKK) and dynamic
conditional correlation (DCC) models. A serious technical deficiency is that the Quasi-Maximum
Likelihood Estimates (QMLE) of a Full BEKK matrix, which is typically estimated in examining
volatility spillover effects, has no asymptotic properties, except by assumption, so that no valid
statistical test of volatility spillovers is possible. Some papers in the literature have used the DCC
model to test for volatility spillovers. However, it is well known in the financial econometrics
literature that the DCC model has no regularity conditions, and that the QMLE of the parameters of
DCC has no asymptotic properties, so that there is no valid statistical testing of volatility spillovers.
The purpose of the paper is to evaluate the theory and practice in testing for volatility spillovers
between energy and agricultural markets using the multivariate Full BEKK and DCC models, and to
make recommendations as to how such spillovers might be tested using valid statistical techniques.
Three new definitions of volatility and covolatility spillovers are given, and the different models used
in empirical applications are evaluated in terms of the new definitions and statistical criteria.
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1. Introduction

Energy and agricultural commodities and markets have been examined extensively, albeit
separately, for a number of years. In the energy literature, the returns, volatility and volatility spillovers
(namely, the delayed effect of a returns shock in one financial asset on the subsequent volatility or
covolatility in another asset), among alternative energy commodities, such as oil, gasoline and ethanol
across different markets, have been analysed using a variety of univariate and multivariate models,
estimation techniques, data sets, and time frequencies. A similar comment applies to the separate
theoretical and empirical analysis of a wide range of agricultural commodities and markets.

Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol, which
can be derived from a range of agricultural products, it is not surprising that there is a topical and
developing literature on the spillovers between energy and agricultural markets, where the emphasis
is on testing the magnitude and direction of the volatility spillovers between alternative commodities
in these markets.

A related area of research is the relationship between energy prices, on the one hand, and
food and fertilizer prices, on the other, as fertilizer prices have a direct and significant effect on
the prices of agricultural products (see, for example [1,2]). However, there do not seem to be any
published papers that have tested for volatility spillover effects between the energy and fertilizer
markets as existing research has focused on univariate conditional volatility models rather than their
multivariate counterparts.

Spillovers can be examined in the conditional means, that is, the financial returns on commodity
prices, or the conditional volatility of the shocks to returns. When spillovers are analysed in the context
of returns, such testing of spillover effects are based on the well-known Granger (non-) causality test
in a vector autoregressive process. Estimation and testing are typically undertaken within a systems
framework for purposes of efficiency in estimation and greater power of the associated tests.

Spillover effects can also be tested in terms of the conditional volatility. Modelling and testing
spillovers between the energy and agricultural markets has typically been based on estimating
multivariate conditional volatility models, specifically the Baba, Engle, Kraft, and Kroner (BEKK)
model of Engle and Kroner [3] and the dynamic conditional correlation (DCC) model of Engle [4].
It has been shown in McAleer et al. [5] that BEKK can be derived from a vector random coefficient
autoregressive model, and that the Quasi-Maximum Likelihood Estimates (QMLE) of the parameters
in BEKK have the asymptotic properties of consistency and asymptotic normality, but only where
the covariance matrix of the random coefficient is a diagonal matrix (or the associated special case of
a scalar matrix). In practice, in the literature on testing for volatility spillovers between energy and
agricultural markets, virtually all of the published papers seem to have estimated a Full BEKK matrix
to test for spillover effects.

A serious technical deficiency and limitation is that the QMLE of a Full BEKK matrix has
no asymptotic properties, except by assumption of the existence of multivariate eighth moments,
which cannot be verified. Therefore, no valid statistical test of volatility spillover effects is possible
within the context of a Full BEKK model. This is in contrast with the Diagonal BEKK counterpart,
where the regularity conditions can be verified, so that the asymptotic properties of the QMLE allow
valid statistical tests of volatility spillovers.

Some papers in the literature have used the DCC model to test for volatility spillovers using
multivariate conditional covariances and conditional correlations. However, it is well known in the
financial econometrics literature that the DCC model has no regularity conditions, and that the QMLE
of the parameters of DCC has no asymptotic properties, except by assumption (see McAleer [6] for
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further details). Therefore, volatility spillovers cannot be tested statistically using the associated
conditional covariances and conditional correlations.

The purpose of the paper is to evaluate the theory and practice in testing for volatility
spillovers between energy and agricultural markets using the BEKK and DCC models, and to
make recommendations as to how such spillovers might be tested using valid statistical techniques.
The published papers in the literature will be evaluated on the basis of countries, energy and
agricultural commodities and markets, data sources, sample periods, data frequencies, analytical
properties of the model specifications, statistical properties of the associated estimators, convergence
of the associated estimation algorithms, number of parameters to be estimated, the hypotheses to be
tested for volatility spillovers, significance of the associated estimators, magnitudes and signs of the
estimators, use of univariate and multivariate conditional volatility models, the presence or otherwise
of volatility spillovers, and an overall assessment of the empirical results in the literature based on
misinterpretations of the models used in estimation.

The plan of the remainder of the paper is as follows: Section 2 presents the stochastic processes
for the two most widely used univariate conditional volatility models in the first step of estimating
the two multivariate conditional volatility models with spillover effects. The technical presentation is
warranted as a precursor to a critical assessment of published empirical papers in leading international
journals. Section 3 analyses 11 papers that have been published in international journals to evaluate
volatility spillovers between energy and agricultural markets, and makes recommendations as to how
such spillovers might be tested using valid statistical techniques. Three new definitions of volatility
spillovers are given, specifically full volatility, full covolatility spillovers, and partial covolatility
spillovers, the alternative multivariate models are evaluated in terms of the new definitions, and
the different multivariate models used in empirical applications are evaluated in terms of the new
definitions and relevant regularity conditions and statistical criteria. Section 4 gives a summary of the
main results in the paper.

2. Stochastic Processes for Univariate and Multivariate Conditional Volatility Models: Full and
Partial Volatility and Covolatility Spillovers

In order to accommodate volatility spillover effects, alternative multivariate volatility models of
the conditional covariances are available. Examples include the diagonal model of Bollerslev et al. [7],
the vech and diagonal vech models of Engle and Kroner [3], the Baba, Engle, Kraft, and Kroner
(BEKK) multivariate GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) model of
Baba et al. [8] and Engle and Kroner [3], the constant conditional correlation (CCC) (specifically,
multiple univariate rather than multivariate) GARCH model of Bollerslev [9], the Ling and
McAleer [10] vector ARMA (Autoregressive moving average)-GARCH (VARMA-GARCH) model,
and the VARMA–asymmetric GARCH (VARMA-AGARCH) model of McAleer et al. [11] the Engle [4]
dynamic conditional correlation (DCC) (technically, dynamic conditional covariance rather than
correlation model—See McAleer [6] and the Tse and Tsui [12] varying conditional correlation (VCC)
model. For further details on most of these multivariate models see, for example, McAleer [13].

The first step in estimating multivariate models is to obtain the standardized shocks from the
conditional mean returns shocks. For this reason, the three most widely used univariate conditional
volatility models, namely GARCH, GJR (Glosten, Jagannathan, and Runkle) and EGARCH (exponential
generalized autoregressive conditional heteroscedastic), will be presented briefly, followed by the
two most widely estimated multivariate conditional covariance models, namely variations of BEKK
and DCC.

Consider the conditional mean of financial returns as follows:

yt = E(yt|It−1) + εt (1)

where the returns, yt = ∆ log Pt, represent the log-difference in financial commodity or agricultural
prices (Pt), It−1 is the information set at time t − 1, and εt is conditionally heteroskedastic. In order to
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derive conditional volatility specifications, it is necessary to specify the stochastic processes underlying
the returns shocks, εt.

2.1. Univariate Conditional Volatility Models

Alternative univariate conditional volatility models are of interest in single index models to
describe individual financial assets and markets. Univariate conditional volatilities can also be
used to standardize the conditional covariances in alternative multivariate conditional volatility
models to estimate conditional correlations, which are particularly useful in developing dynamic
hedging strategies.

The three most popular univariate conditional volatility models are discussed below, together
with the associated regularity conditions, the conditions required for asymmetry and leverage, and the
conditions underlying the asymptotic properties of consistency and asymptotic normality, where they
can be shown to exist.

2.1.1. Random Coefficient Autoregressive Process and GARCH

Consider the random coefficient autoregressive process of order one:

εt = φt εt−1 + ηt (2)

where φt ~iid(0, α), ηt ~iid(0, ω), and ηt = εt/
√

ht is the standardized residual. Tsay [14] derived the
ARCH (1) model of Engle [15] from Equation (2) as:

ht = E(ε2
t

∣∣∣It−1) = ω + αε2
t−1 (3)

where ht is conditional volatility, and It−1 is the information set available at time t − 1. The use of an
infinite lag length for the random coefficient autoregressive process in Equation (2), with appropriate
geometric restrictions (or stability conditions) on the random coefficients, leads to the GARCH model
of Bollerslev [16]. From the specification of Equation (2), it is clear that both ω and α should be positive
as they are the unconditional variances of two different stochastic processes.

The QMLE of the parameters of ARCH (Autoregressive conditional heteroscedasticity) and
GARCH have been shown to be consistent and asymptotically normal in several papers. For example,
Ling and McAleer [10] showed that the QMLE for GARCH(p,q) is consistent if the second moment is
finite. Moreover, a weak sufficient log-moment condition for the QMLE of GARCH(1,1) to be consistent
and asymptotically normal is given by: E(log(αη2

t + β)) < 0,
∣∣β∣∣< 1 , which is not easy to check in

practice as it involves two unknown parameters and a random variable. The more restrictive second
moment condition, namely α + β < 1, is much easier to check in practice.

In general, the proofs of the asymptotic properties follow from the fact that ARCH and GARCH
can be derived from a random coefficient autoregressive process (see McAleer et al. [5] for a general
proof of multivariate models that are based on proving that the regularity conditions satisfy the
conditions given in Jeantheau [17] for consistency, and the conditions given in Theorem 4.1.3 in
Amemiya for asymptotic normality).

2.1.2. Random Coefficient Autoregressive Process and GJR

The ARCH and GARCH models are symmetric, that is, positive and negative shocks of equal
magnitude have identical effects on conditional volatility. Consequently, there is no asymmetry,
and hence no leverage, whereby negative shocks increase conditional volatility and positive shocks
decrease conditional volatility (see Black [18]).

McAleer [19] showed that the GJR model of Glosten, Jagannathan and Runkle [20] could be
derived as a simple extension of the random coefficient autoregressive process in Equation (2), with an
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indicator variable I(εt−1) that distinguishes between the different effects of positive and negative
returns shocks on conditional volatility, namely:

εt = φt εt−1 + ψt I(εt−1) εt−1 + ηt (4)

where φt ~iid(0, α), ψt ~iid(0, γ), ηt ~iid(0, ω), I(εt−1) = 1 when εt−1 < 0, I(εt−1) = 0 when εt−1 ≥ 0,
ηt = εt/

√
ht is the standardized residual, and the indicator functions, I(εt−1), are random variables.

The conditional expectation of the squared returns shocks in Equation (4), which is typically
referred to as the GJR (alternatively, as the threshold or asymmetric GARCH) model, is an extension of
Equation (3), as follows:

ht = E(ε2
t

∣∣∣It−1) = ω + α ε2
t−1 + γ I(εt−1) ε2

t−1 (5)

The use of an infinite lag length for the random coefficient autoregressive process in Equation (4),
with appropriate restrictions on the random coefficients (namely, stability conditions), leads to the
standard GJR model with lagged conditional volatility. From the specification of Equation (4),
it is clear that all three parameters should be positive as they are the variances of three different
stochastic processes.

A sufficient condition for the consistency of the QMLE of GJR(1,1) is the existence of the second
moment, namely α + β + γ/2 < 1. McAleer et al. [21] showed that the weaker sufficient log-moment
condition for consistency of the QMLE of GJR(1,1) is given by: E(log [(α + γ I(ηt)) η2

t + β]) < 0,
∣∣β∣∣< 1 ,

which involves three unknown parameters, an indicator function, and a random variable. As in the
case of the log-moment condition for GARCH(1,1), the more restrictive second moment condition is
much easier to check in practice.

As in the case of ARCH and GARCH, the proofs of the asymptotic properties follow from the fact
that GJR can be derived from a random coefficient autoregressive process (see McAleer et al. [5] for a
general proof of multivariate models that are based on proving that the regularity conditions satisfy
the conditions given in Jeantheau [17] for consistency, and the general conditions given in Theorem
4.1.3 in Amemiya [22] for asymptotic normality).

As shown in McAleer [19], the GJR model is asymmetric, in that positive and negative shocks of
equal magnitude have different effects on conditional volatility. Therefore, asymmetry exists for GJR if:
Condition for Asymmetry for GJR: γ > 0.

A special case of asymmetry is leverage, which is the negative correlation between returns
shocks and subsequent shocks to volatility (see Black [18]). The differences between asymmetry
and leverage are frequently misunderstood and misinterpreted in practice, it is worth stating them
explicitly. The conditions for leverage in the GJR model in Equation (5) are: Condition for Leverage for
GJR: α < 0 and α + γ > 0.

The second parametric condition for leverage is typically omitted in the literature on GJR. It is
clear that leverage is not possible for GJR as both α and γ, which are the variances of two stochastic
processes, must be positive.

2.1.3. Random Coefficient Complex Nonlinear Moving Average Process and EGARCH

Another conditional volatility model that can accommodate asymmetry is the EGARCH model
of Nelson [23,24]. McAleer and Hafner [25] showed that EGARCH could be derived from a random
coefficient complex nonlinear moving average (RCCNMA) process, as follows:

εt = φt

√
|ηt−1|+ ψt

√
ηt−1 + ηt (6)
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where φt ~iid(0, α), ψt ~iid(0, γ), ηt ~iid(0, ω),
√

ηt−1 is a complex-valued function of ηt−1, and
ηt = εt/

√
ht is the standardized residual. McAleer and Hafner [25] show that the conditional

variance of the squared returns shocks in Equation (6) is:

ht = E(ε2
t

∣∣∣It−1) = ω + α
∣∣∣ηt−1

∣∣∣+γ ηt−1 (7)

where it is clear from the RCCNMA process in Equation (6) that all three parameters should be positive
as they are the variances of three different stochastic processes.

Although the transformation of ht in Equation (7) is not logarithmic, the approximation given by:
log ht = log(1 + (ht − 1)) ≈ ht − 1 can be used to replace ht in Equation (7) with 1 + log ht. The use of
an infinite lag for the RCCNMA process in Equation (6) would yield the standard EGARCH model
with lagged conditional volatility.

As EGARCH can be derived from a random coefficient complex nonlinear moving average
(RCCNMA) process, it follows that there is no invertibility condition to transform the returns shocks
to the standardized residuals. Therefore, there are as yet no asymptotic properties of the QMLE of the
parameters of EGARCH.

Recently, Martinet and McAleer [26] showed that the EGARCH(p,q) model could be derived
from a stochastic process, for which the invertibility conditions can be stated simply and explicitly.
This theoretical result is likely to lead to the development of asymptotic properties for the QMLE
of EGARCH.

McAleer and Hafner [25], among others, including Nelson [23], Engle and Figlewski [27],
EViews [28], and RATS [29], show that asymmetry exists for EGARCH if: Condition for Asymmetry
for EGARCH: γ > 0, and that leverage exists for EGARCH model if: Condition for Leverage for
EGARCH: γ < 0 and γ < α < −γ. Chang and McAleer [30,31] provide the correct interpretation of
asymmetry for EGARCH, and show that the correct condition for asymmetry is actually: Condition
for Asymmetry for EGARCH: α 6= 0.

In virtually every empirical study where EGARCH is estimated, the QMLE of α is statistically
significant, so α 6= 0. Thus, in practice, EGARCH always displays asymmetry, though not leverage.

The second parametric condition for leverage is typically omitted in the literature on EGARCH,
without explanation. As in the case of the GJR model, it is clear that leverage is not possible for
EGARCH as both α and γ, which are the variances of two stochastic processes, must be positive.

2.2. Multivariate Conditional Volatility Models

The multivariate extension of univariate GARCH is given in Baba et al. [8] and Engle and
Kroner [3], while the multivariate extension of univariate GJR is given in McAleer et al. [11].
A multivariate extension of the univariate EGARCH model has been considered in Kawakatsu [32],
although no asymptotic properties have yet been established for the matrix exponential GARCH model
(see Martinet and McAleer [26] for further details).

It would seem that the conditions for asymmetry and leverage for the GJR and EGARCH models
should also be applicable to their multivariate counterparts, although this does not seem to be common
in practice. The asymmetry conditions for multivariate GJR are given in the VARMA-AGARCH
model of McAleer et al. [11]. Leverage has typically been presented for individual equations only,
as defined by Black [18] for univariate processes using arguments based on the debt-to-equity ratio.
The multivariate counterpart of leverage does not yet seem to have been defined, primarily because
co-leverage across different assets does not have an unambiguous meaning in terms of the debt-equity
ratio for a portfolio of assets.

In order to establish volatility spillovers in a multivariate framework, it is useful to define
the multivariate extension of the relationship between the returns shocks and the standardized
residuals, that is, ηt = εt/

√
ht. The multivariate extension of Equation (1), namely yt = E(yt|It−1) + εt ,
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can remain unchanged by assuming that the three components are now m× 1 vectors, where m is the
number of financial assets. The multivariate definition of the relationship between εt and ηt is given as:

εt = D1/2
t ηt (8)

where Dt = diag(h1t, h2t, . . . , hmt) is a diagonal matrix comprising the univariate conditional volatilities.
Define the conditional covariance matrix of εt as Qt. As the m× 1 vector, ηt, is assumed to be iid for all
m elements, the conditional correlation matrix of ηt, which is equivalent to the conditional correlation
matrix of ηt, is given by Γt. Therefore, the conditional expectation of (8) is defined as:

Qt = D1/2
t Γt D1/2

t (9)

Equivalently, the conditional correlation matrix, Γt, can be defined as:

Γt = D−1/2
t Qt D−1/2

t (10)

Equation (9) is useful if a model of Γt is available for purposes of estimating Qt, where as (10) is
useful if a model of Qt is available for purposes of estimating Γt.

Equation (9) is convenient for a discussion of volatility spillover effects, while both Equations (9)
and (10) are instructive for a discussion of asymptotic properties. As the elements of Dt are consistent
and asymptotically normal, the consistency of Qt in (9) depends on consistent estimation of Γt, whereas
the consistency of Γt in (10) depends on consistent estimation of Qt. As both Qt and Γt are products of
matrices, neither the QMLE of Qt or Γt will be asymptotically normal based on the definitions given in
Equations (9) and (10).

2.3. Full and Partial Volatility and Covolatility Spillovers

Volatility spillovers are defined as the delayed effect of a returns shock in one asset on the
subsequent volatility or covolatility in another asset. Therefore, a model relating Qt to returns shocks
is essential, and this will be addressed in the following sub-section. Spillovers can be defined in terms
of full volatility spillovers and full covolatility spillovers, as well as partial covolatility spillovers,
as follows, for i, j, k = 1, . . . , m:

(1) Full volatility spillovers:
∂Qiit/∂εkt−1, k 6= i (11)

(2) Full covolatility spillovers:
∂Qijt/∂εkt−1, i 6= j, k 6= i, j (12)

(3) Partial covolatility spillovers:

∂Qijt/∂εkt−1, i 6= j, k = either i or j (13)

Full volatility spillovers occur when the returns shock from financial asset k affects the volatility
of a different financial asset i.

Full covolatility spillovers occur when the returns shock from financial asset k affects the
covolatility between two different financial assets, i and j.

Partial covolatility spillovers occur when the returns shock from financial asset k affects the
covolatility between two financial assets, i and j, one of which can be asset k.

When m = 2, only (1) and (3) are possible as full covolatility spillovers depend on the existence of
a third financial asset.

As mentioned above, spillovers require a model that relates the conditional volatility matrix, Qt,
to a matrix of delayed returns shocks. The two most frequently used models of multivariate conditional
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covariances are alternative specifications of the BEKK and DCC models, with appropriate parametric
restrictions, which will be considered below.

2.4. Diagonal and Scalar Baba, Engle, Kraft, and Kroner (BEKK)

The vector random coefficient autoregressive process of order one is the multivariate extension of
Equation (2), and is given as:

εt = Φt εt−1 + ηt (14)

where εt and ηt are m× 1 vectors, and Φt is an m×m matrix of random coefficients, and Φt ~iid(0, A),
ηt ~iid(0, QQ′).

Technically, a vectorization of a full (that is, non-diagonal or non-scalar) matrix A to vec A can
have dimension as high as m2 ×m2, whereas vectorization of a symmetric matrix A to vech A can have
dimension as low as m(m− 1)/2×m(m− 1)/2.

In a case where A is either a diagonal matrix or the special case of a scalar matrix, A = aIm,
McAleer et al. [5] showed that the multivariate extension of GARCH(1,1) from Equation (14),
incorporating an infinite geometric lag in terms of the returns shocks, is given as the diagonal or
scalar BEKK model, namely:

Qt = QQ′ + Aεt−1ε′t−1 A′ + BQt−1B′ (15)

where A and B are both either diagonal or scalar matrices.
McAleer et al. [5] showed that the QMLE of the parameters of the diagonal or scalar BEKK models

were consistent and asymptotically normal, so that standard statistical inference on testing hypotheses
is valid. Moreover, as Qt in (15) can be estimated consistently, Γt in Equation (10) can also be estimated
consistently. For further details, see Chang et al. [33,34].

In terms of volatility spillovers, as the off-diagonal terms in the second term on the right-hand side
of Equation (15), Aεt−1ε′t−1 A′, have typical (i,j) elements aiiajjεit−1ε jt−1, i 6= j, i, j = 1, . . . , m, there are
no full volatility or full covolatility spillovers. However, partial covolatility spillovers are not only
possible, but they can also be tested using valid statistical procedures.

2.5. Triangular, Hadamard and Full BEKK

Without actually deriving the model from an appropriate stochastic process, Baba et al. [8] and
Engle and Kroner [3] considered the Full BEKK model, as well as the special cases of triangular and
Hadamard (element-by-element multiplication) BEKK models. The specification of the multivariate
model is the same as the specification in Equation (15), namely:

Qt = QQ′ + Aεt−1ε′t−1 A′ + BQt−1B′ (16)

except that A and B are Full, Hadamard or triangular matrices, rather than diagonal or scalar matrices,
as in (15).

Although estimation of the Full, Hadamard and triangular BEKK models is available in some
standard econometric and statistical software packages, it is not clear how the likelihood functions
might be determined. Moreover, the so-called “curse of dimensionality”, whereby the number of
parameters to be estimated is excessively large, makes convergence of any estimation algorithm
somewhat problematic.

Jeantheau [17] showed that the QMLE of the parameters of the Full BEKK model is consistent
under a multivariate log-moment condition, while Comte and Lieberman [35] showed that the QMLE
are asymptotically normal under the assumption of the existence of eighth moments. Unfortunately,
the multivariate log-moment condition is more complicated than the counterparts for the GARCH(1,1)
and GJR(1,1) models given in Sections 2.1.1 and 2.1.2, respectively. Specifically, the multivariate
log-moment conditions are difficult to verify when the matrices A and B are neither diagonal nor
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scalar matrices, and the eighth moment condition cannot be verified for a Full BEKK model. Therefore,
there are as yet no verifiable asymptotic properties of the Full, Hadamard or triangular BEKK models.

The Full, Hadamard and triangular BEKK models have full volatility spillovers, full covolatility
spillovers, and partial covolatility spillovers. However, any hypothesis testing relating to such
spillovers is not possible as the QMLE do not possess any verifiable asymptotic properties. Moreover,
as Qt in (15) cannot be shown to be estimated consistently, Γt in Equation (10) also cannot be shown to
be estimated consistently.

This is in sharp contrast to a number of published papers in the literature whereby volatility
spillovers have been tested incorrectly based on the off-diagonal terms in the matrix A in Equation (16).
This will be elaborated in Section 3 below.

2.6. Diagonal and Scalar Dynamic Conditional Correlation (DCC)

Another multivariate conditional volatility model has been suggested by Engle [4], who presented,
without using any stochastic process for the underlying returns shocks, what is purported to be a
dynamic conditional correlation (DCC) model. Without distinguishing between dynamic conditional
covariances and dynamic conditional correlations, Engle [4] presented the scalar DCC specification as:

Qt = (1− α− β)Q + αηt−1η′t−1 + βQt−1 (17)

where Q is assumed to be positive definite with unit elements along the main diagonal, the scalar
parameters are assumed to satisfy the stability condition, α + β < 1, the standardized shocks, ηt, have
been defined previously.

As the matrix in Equation (17) does not satisfy the definition of a correlation matrix, specifically
the off-diagonal terms are not necessarily positive or negative fractions, and the diagonal elements are
not necessarily all equal to one, Engle [4] uses the following standardization:

Γt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2 (18)

As discussed in McAleer [6], there is no clear explanation given in Engle [4] for the standardization
in Equation (18) or, more recently, in Aielli [36]. The standardization in Equation (18) might make
sense if the matrix Qt in (17) were the conditional covariance matrix of εt or ηt, though this is also not
made clear. Despite the title of the paper, Aielli [36] also does not provide any stationarity conditions
for the DCC model, and does not mention invertibility. Indeed, in the literature on DCC, it is not clear
whether Equation (17) refers to a conditional covariance or a conditional correlation matrix.

Similar comments also apply to the varying conditional correlation (VCC) model of Tse and
Tsui [12], where the first stage is based on a standard GARCH(1,1) model using returns shocks.
The second stage is slightly different from the DCC formulation as the dynamic conditional correlations
are defined appropriately as correlations. However, no regularity conditions are presented, and hence
no statistical properties are given. Some useful caveats regarding DCC and VCC are given in Caporin
and McAlee [37].

McAleer [6] uses a vector random coefficient moving average process to derive a scalar DCC
model, where it is shown that: (i) DCC is a dynamic conditional covariance model of the returns shocks
rather than a dynamic conditional correlation model; (ii) provides the motivation for standardization of
the conditional covariances to obtain the conditional correlations; and (iii) shows that the appropriate
GARCH model for DCC is based on the standardized shocks rather than the returns shocks.

In what follows, the analysis of McAleer [6] is extended to derive a Diagonal DCC model, of which
a special case is the standard DCC model. Specifically, let:

εt = Θt ηt−1 + ηt (19)
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where εt and ηt are m× 1 vectors, and Θt is an m×m matrix of random coefficients, and Θt ~iid(0, A),
ηt ~iid(0, Γ). The conditional covariance matrix of (19) is given as:

Qt = Γ + Aηt−1η′t−1 A′ (20)

As in the case of the derivation of the BEKK model, it is assumed that A is either a diagonal or
scalar matrix, otherwise the derivation in (20) will not be possible because of non-conformity of the
matrices in the matrix product.

A straightforward extension of (19) to a vector random coefficient moving average process of
order infinity, with appropriate geometric restrictions, leads to an extension of (20), as follows:

Qt = Γ + Aηt−1η′t−1 A′ + BQt−1B′ (21)

where B is also a diagonal or scalar matrix. The scalar version of DCC in (21), in which A = α1/2 and
B = β1/2 gives the scalar DCC model in (17). The standardization of Γt given in (18) ensures that the
elements of the standardized matrix satisfy the definition of a matrix of correlation coefficients.

The diagonal and scalar versions of DCC do not have full volatility or full covolatility spillovers,
but partial covolatility spillovers are possible. However, it is well known that the QMLE of DCC
have no regularity conditions or asymptotic properties (see, for example, Aielli [36] and Caporin and
McAleer [37]). McAleer [6] demonstrates stationarity and invertibility of the DCC specification given
in Equation (21), which is an important step in demonstrating the asymptotic properties of the QMLE
of the parameters of scalar BEKK. It follows, therefore, that any statistical tests of volatility spillovers,
specifically partial covolatility spillovers, will be invalid.

This is in marked contrast to a number of published papers in the literature whereby volatility
spillovers have been tested incorrectly based on the off-diagonal terms in the matrix A in Equation (21).
This will be elaborated in Section 3 below.

3. Critical Analysis of the Empirical Literature

The technical presentation given above is warranted as a precursor to a critical assessment of
published empirical papers in leading international journals. A useful though not necessarily a
technically accurate or critical analysis of the empirical literature on examining volatility spillovers has
been presented in “The dynamic pattern of volatility spillovers between oil and agricultural markets”
by Saucedo, Brümmer and Jaghdani [38]. The authors examined 23 published papers predominantly
on the basis of univariate and multivariate conditional volatility models, as well as one paper on each
of univariate stochastic volatility and univariate realized volatility. It is clear that conditional volatility
models, as discussed in the previous section, dominate in any empirical analysis that tests for volatility
spillover effects.

The papers discussed in Saucedo, Brümmer and Jaghdani [38] were analysed on the basis of
products (or energy and agricultural commodities), region or country, model (specification), time frame
(or sample period), (data) frequency, and empirical findings regarding spillovers. As discussed in the
previous section, sensible analysis of volatility spillovers requires multivariate models to estimate and
test for full volatility spillovers, full covolatility spillovers, and partial covolatility spillovers.

For this reason, in this paper we have chosen 11 of the 23 published empirical papers that have
used the multivariate Full BEKK model (in one paper, the Diagonal BEKK model), and two papers
that estimated both the Full BEKK and scalar DCC models. The scalar BEKK model was not used at
all, and in some cases a univariate conditional model was presented in addition to the multivariate
conditional volatility models.

The 11 papers that will be appraised in chronological order are: “Ethanol, corn, and soybean price
relations in a volatile vehicle-fuels market” by Zhang, Lohr, Escalante and Wetzstein [39], “Volatility
spillovers between food and energy markets: A semiparametric approach” by Serra [40], “Price
volatility in ethanol markets” by Serra, Zilberman and Gil [41], “Volatility spillover effects and cross
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hedging in corn and crude oil futures” by Wu, Guan and Myers [42], “Volatility spillovers in US
crude oil, ethanol and corn futures markets” by Trujillo-Barrera, Mallory and Garcia [43], “Inside the
Black Box: The price linkage and transmission between energy and agricultural markets” by Du and
McPhail [44], “Do energy prices stimulate food price volatility? Examining volatility transmission
between US oil, ethanol and corn markets” by Gardebroek and Hernandez [45], “Price volatility in food
markets: can stock building mitigate price fluctuations?” by Serra and Gil [46], “Volatility spillovers
in China’s crude oil, corn and fuel ethanol markets” by Wu and Li [47], “The influence of biofuels,
economic and financial factors on daily returns of commodity futures prices” by Algieri [48], and
“Dynamic spillovers among major energy and cereal commodity prices” by Mensi, Hammoudeh,
Nguyen and Yoon [49].

The appraisal of the empirical literature in this section does not consider the empirical findings
as these are already given in Saucedo, Brümmer and Jaghdani [38], albeit not critically from either a
mathematical or statistical perspective. This paper is concerned with the statistical testing of volatility
spillover effects, and will concentrate on the regularity conditions, statistical properties, hypothesis
testing and statistical significance, as appropriate.

In addition to the energy commodities, agricultural commodities, countries, multivariate
conditional volatility models, sample periods, and data frequencies that were discussed in Saucedo,
Brümmer and Jaghdan [38], the paper also considers in Tables 1–3, the journals in which the papers
were published, the energy and agricultural prices (namely spot or futures prices), data sources,
software packages used in estimation and testing, the univariate conditional volatility models used in
estimation as a first step in estimating their multivariate counterparts, the types of spillover effects
considered (namely full volatility, full covolatility and partial covolatility spillovers), the analytical and
statistical properties of the conditional volatility models, the purported hypothesis tests, the purported
statistical significance of the tests, and an overall assessment of each of the published papers.

The 11 papers were published in some of the leading energy, agricultural and natural resource
economics, and futures market journals, namely Energy Economics (three papers), European Review of
Agricultural Economics (two papers), Energy Policy (two papers), and one paper in each of the Journal of
Agricultural and Resource Economics, Energy Journal, Energies, and Journal of Futures Markets.

Also given in Table 1 are the countries for which the energy and agricultural products data are
obtained, predominantly the USA for ethanol, fuel ethanol, crude oil, light crude oil, heating oil,
biodiesel, gasoline, and heating oil. Other countries or regions considered include France for ethanol,
crude oil and biodiesel, the European Union for oil, heating oil and gasoline, China for crude oil and
fuel ethanol, international countries for crude oil and ethanol, and Brazil for crude oil and ethanol.
The agricultural commodities include corn, rapeseed, soybeans, soybean oil, sugar and wheat for the
USA and France, barley, corn, sorghum and wheat for the USA and European Union, sugar for the
USA, Brazil and other international countries, and corn for the USA and China.

Table 1 also shows that the most frequently used data on prices were for spot (or cash) prices
(five papers), futures prices (three papers), and one paper each for both spot and futures prices, both
spot prices and index, and nominal prices. The sample periods ranged from 1989, 1990, 1992, 1997,
2000, 2003, 2005 and 2006 through to 2007, 2008, 2009, 2010, 2011, 2012 and 2013 for weekly data
(seven papers), daily data (three papers, and one paper that used monthly data for ethanol and corn
(see also Table 2)).
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Table 1. Summary of Literature on Volatility between Energy and Agricultural Markets using Baba, Engle, Kraft, and Kroner (BEKK) and dynamic conditional
correlation (DCC).

Author(s) (Year)
[Reference] Journals Countries Energy Commodities Agricultural

Commodities Sample Periods Prices

Algieri (2014) [48] Energy Policy USA, France Ethanol, crude oil,
biodiesel

Corn, rapeseed,
soybeans, soybean oil,

sugar, wheat
2005–2013 Futures

Du and McPhail (2012) [44] Energy Journal USA Ethanol, gasoline, light
crude oil Corn 25 March 2005–25 March

2011 Futures

Gardebroek and Hemandez
(2013) [45] Energy Economics USA Crude oil, ethanol Corn 1997–2011 Spot

Mensi, Hammoudeh,
Nguyen and Yoon (2014) [49] Energy Economics USA, EU Oil, gasoline, heating oil Barley, corn, sorghum,

wheat 2000–2013 Spot

Serra (2011) [41] Energy Economics International, Brazil Crude oil, ethanol Sugar July 2000–November
2009 Spot

Serra and Gil (2013) [46] European Review of
Agricultural Economics USA Ethanol Corn January 1990–December

2010 Nominal

Serra, Zilberman and Gil
(2011) [41]

European Review of
Agricultural Economics USA, Brazil Crude oil, ethanol Sugar July 2000–February 2008 Spot

Trujillo-Barrera, Mallory and
Garcia (2012) [45]

Journal of Agricultural
and Resource Economics USA Crude oil, ethanol Corn 2006–2011 Futures

Wu, Guan and Myers
(2011) [42] Journal of Futures Markets USA Crude oil Corn 1992–2009 Spot, futures

Wu and Li (2013) [47] Energy Policy China Crude oil, fuel ethanol Corn 2003–2012 Spot, index

Zhang, Lohr, Escalante and
Wetzstein (2009) [39] Energies USA Ethanol, gasoline, oil Corn, soybean March 1989–December

2007 Spot
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Table 2. Summary of Literature on Volatility between Energy and Agricultural Markets using BEKK and DCC.

Author(s) (Year) [Reference] Data
Frequency Data Sources Software

Packages Used
Multivariate

Models
Univariate

Models Spillovers

Algieri (2014) [48] Daily Bloomberg Unstated Diagonal BEKK GARCH,
EGARCH Partial covolatility

Du and McPhail (2012) [44] Daily CME (corn, ethanol, gasoline, light
crude oil), NYMEX (gasoline) Unstated Scalar DCC GARCH Partial covolatility

Gardebroek and Hemandez
(2013) [45] Weekly EIA (oil), CBOT (ethanol), FAO (corn) Unstated Full BEKK, scalar

DCC GARCH
Full volatility, Full
covolatility, Partial

covolatility

Mensi, Hammoudeh, Nguyen
and Yoon (2014) [49] Daily EIA (energy), IGC (cereal) Unstated Full BEKK, scalar

DCC GARCH
Full volatility, Full
covolatility, Partial

covolatility

Serra (2011) [41] Weekly CEPEA (ethanol, sugar), EIA (crude oil) Unstated Full BEKK Semi-parametric
GARCH

Full volatility, Full
covolatility, Partial

covolatility

Serra and Gil (2013) [46] Monthly Nebraska Government (ethanol), NASS
(corn) Unstated Full BEKK GARCH

Full volatility, Full
covolatility, Partial

covolatility

Serra, Zilberman and Gil
(2011) [41] Weekly

Center for Advanced Studies on
Applied Economics (ethanol, sugar),

EIA (crude oil)
WinRATS (v. 6.30) Full BEKK GARCH

Full volatility, Full
covolatility, Partial

covolatility

Trujillo-Barrera, Mallory and
Garcia (2012) [45] Weekly NYMEX (WTI), CBOT (ethanol, corn) Unstated Full BEKK Threshold

GARCH

Full volatility, Full
covolatility, Partial

covolatility

Wu, Guan and Myers (2011) [42] Weekly USDA (corn cash), CBOT (corn
futures), NYMEX (crude oil) Unstated Full BEKK Threshold

GARCH

Full volatility, Full
covolatility, Partial

covolatility

Wu and Li (2013) [47] Weekly National Bureau of Statistics of China Unstated Full BEKK EGARCH
Full volatility, Full
covolatility, Partial

covolatility

Zhang, Lohr, Escalante and
Wetzstein (2009) [39] Weekly Ethanol & Biodiesel News (ethanol), EIA

(gasoline, oil,), USDA (corn, soybean) Unstated Full BEKK GARCH
Full volatility, Full
covolatility, Partial

covolatility
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Table 2 also shows that the primary data sources included Bloomberg, EIA (energy, oil, crude oil,
gasoline), IGC (cereal), CBOT (ethanol, corn, corn futures), FAO (corn), National Bureau of Statistics
of China, Nebraska Government (ethanol), NASS (corn), CME (corn, ethanol, gasoline, light crude
oil), NYMEX (gasoline, WTI, crude oil), CEPEA (ethanol, sugar), Center for Advanced Studies on
Applied Economics (ethanol, sugar), USDA (corn cash), Ethanol and Biodiesel News (ethanol), and USDA
(corn soybean).

The same table shows that only one paper, namely Serra, Zilberman and Gil [41], stated the
statistical, econometric or financial econometric software package, specifically, WinRATS version 6.30,
that was used in estimation, whether for univariate or multivariate conditional volatility models.
Consequently, there was no discussion of convergence of any algorithms that were used to estimate
the models. This is a disappointing finding as it can be quite difficult to reproduce empirical results,
especially for multivariate conditional volatility models, when the software package is not stated
explicitly. Moreover, the “curse of dimensionality” cannot be determined when there is no discussion
of the convergence of the algorithms, despite the fact it is well known that convergence is problematic
when more than three financial assets are used to estimate the Full BEKK model.

The last three columns of Table 2 provide some useful insights regarding the types of univariate
and multivariate conditional volatility models that are estimated, as well as the alternative volatility
spillovers that can be considered. The Full BEKK model is estimated in seven papers, both the Full
BEKK and scalar DCC models are estimated in two papers, and the Diagonal BEKK model and
scalar DCC model are estimated separately in one paper each. As discussed in Section 2.3, the Full
BEKK models incorporates full volatility, full covolatility and partial co-volatility spillovers, while the
Diagonal BEKK and scalar DCC models allow only partial co-volatility spillovers. Valid statistical
testing of such spillovers effects is discussed in Table 3 below.

As univariate models are necessary to obtain the standardized residuals for subsequent
multivariate estimation and testing, each of the papers uses at least one, indeed usually only one,
univariate conditional volatility model to initiate the estimation process. Of the 11 published papers,
seven use only the GARCH model (including one semi-parametric GARCH model), two use the
threshold GARCH model (also commonly known as GJR), one paper uses only EGARCH, and one
uses both the GARCH and EGARCH models.

The analytical and statistical properties of the QMLE of the univariate and multivariate conditional
volatility models are analysed in Table 3. Somewhat surprisingly and disappointingly, all 11 papers
ignore any discussion of the analytical properties of the multivariate conditional volatility models, and
nine of the papers also ignore the analytical properties of the univariate conditional volatility models
as a precursor to estimating the multivariate models. Gardebroek and Hernandez [45] report that α
+ β < 1, without explanation, but do not seem to appreciate that this is a sufficient but not necessary
condition for the unconditional variance to be finite, and for the QMLE to be consistent. Wu and Li [47]
discuss the conditions for asymmetry and leverage for the EGARCH model, but do so incorrectly by
concentrating on the first condition, albeit incorrectly, namely rather than, and ignoring the second
condition altogether, namely.

The papers purportedly test the hypotheses relating to volatility and covolatility spillovers
without recognizing that such tests are invalid except for the Diagonal and scalar BEKK models, and
not valid whatsoever for the scalar DCC models. Only one paper fails to provide any evidence of any
purported hypothesis tests or diagnostic checks. The diagnostic checks include the standard Ljung-Box
Q test for the absence of serial correlation in the residuals of the conditional mean equation (in two
papers), normality tests of the returns shocks (in four papers), both unit root tests and cointegration
tests (in six papers), tests of causality (in three papers), and a test for long memory (in one paper).
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Table 3. Summary of Literature on Volatility between Energy and Agricultural Markets using BEKK and DCC.

Author(s) (Year) [Reference] Analytical Properties of Models Statistical Properties
of Models

Purported Hypothesis
Testing

Purported Significance
of Estimates

Overall
Assessment

Algieri (2014) [48] Not addressed Not addressed Ljung-Box Q, normality, long
memory Yes Questionable

Du and McPhail (2012) [44] Not addressed Not addressed Unit root, cointegration Yes Questionable

Gardebroek and Hemandez
(2013) [45] ‘α + β < 1 for GARCH Not addressed Ljung-Box Q, unit root Yes Questionable

Mensi, Hammoudeh, Nguyen
and Yoon (2014) [49] Not addressed Not addressed Normality, unit root,

causality Yes Questionable

Serra (2011) [41] Not addressed Not addressed Unit root, cointegration Yes Questionable

Serra and Gil (2013) [40] Not addressed Not addressed None Yes Questionable

Serra, Zilberman and Gil
(2011) [41] Not addressed Not addressed Unit root, cointegration Yes Questionable

Trujillo-Barrera, Mallory and
Garcia (2012) [43] Not addressed Not addressed Unit root, cointegration Yes Questionable

Wu, Guan and Myers (2011) [42] Not addressed Not addressed Normality, unit root,
cointegration Yes Questionable

Wu and Li (2013) [47] Incorrect discussion of leverage
effect for EGARCH Not addressed Normality, unit root,

causality Yes Questionable

Zhang, Lohr, Escalante and
Wetzstein (2009) [39] Not addressed Not addressed Unit root, cointegration,

causality Yes Questionable
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As can be seen from Table 3, all 11 papers reported on the purported statistical significance of
the estimated parameters, despite the fact that there is no proof that the statistical properties hold for
diagnostic checks and statistical significance of estimated presence in the absence of asymptotic results
for the multivariate conditional volatility models. These diagnostic checks are generally invalid in the
presence of estimating volatility and covolatility spillovers, except under the null hypothesis that such
spillovers do not exist, which would seem to destroy the primary purpose of the analysis.

As seven of the 11 papers used weekly data and one paper used monthly data, with the remaining
three papers having used daily data, it is surprising that there were no tests conducted for seasonal
unit roots or the possibility of seasonal cointegration. Having said that, there is no statistical proof that
such diagnostic checks would be valid in the absence of any asymptotic theory underlying the Full
BEKK and scalar DCC models.

The last column in Table 3 makes it clear that the overall assessment of the empirical literature in
estimating and testing for volatility and covolatility spillovers between the energy and agricultural
markets is one of disappointment. In short, the theoretical and empirical analyses in every paper
are questionable.

The only tests that are valid asymptotically are for the scalar and Diagonal BEKK models.
The Diagonal BEKK model was estimated only in the paper by Algieri, but without explanation
or any statement to the effect of statistical validity. It can reasonably be presumed that the Diagonal
BEKK model was estimated to overcome the “curse of dimensionality” that would otherwise have been
faced in trying to obtain convergence in estimating the Full BEKK model. This raises serious questions
and reservations about the unstated convergence in estimating the Full BEKK model in 9 of the
11 published papers in the literature on volatility spillovers between energy and agricultural markets.

The technical presentation of the published empirical papers in leading international journals is
warranted as a precursor to a critical assessment and evaluation. Technical validity is essential,
otherwise the mathematical regularity conditions, including invertibility, will not be satisfied.
This means that the likelihood function either does not exist or cannot be specified algebraically,
so that the likelihood equations required to present the first and second derivatives for purposes of
deriving the asymptotic distribution cannot be obtained. In short, there will be no statistical properties
for purposes of a valid statement of inferences regarding statistical significance.

4. Concluding Remarks

The primary purpose of the paper was to specify, estimate and test for volatility and covolatility
spillovers between the energy and agricultural markets. The paper showed that in the energy literature,
the returns, volatility and volatility spillovers among alternative energy commodities have been
analysed using a variety of univariate and multivariate conditional volatility models, the leading
energy and agricultural economics journals in which the papers were published, estimation techniques,
data sets, time frequencies, energy and agricultural prices, data sources, software packages used in
estimation and testing, the univariate conditional volatility models used in estimation as a first step in
estimating their multivariate counterparts, the types of volatility spillover effects that are considered
(namely full volatility, full covolatility and partial covolatility spillovers), the analytical (regularity)
conditions, statistical properties of the conditional volatility models, the purported hypothesis tests, the
purported statistical significance of the tests, and an overall assessment of each of the published papers.

A similar comment applies to the separate theoretical and empirical analysis of a wide range of
agricultural commodities and markets. The technical presentation above is warranted as a precursor to
a critical assessment of published empirical papers in leading international journals. Each paper that
was critically assessed failed to adhere to acceptable mathematical and statistical standards in terms of
the regularity conditions that govern the model, including invertibility, which determines whether
the likelihood function can be related to the data, as well as the likelihood equations that lead to the
asymptotic distribution of the QMLE of the unknown parameters. Seen in this light, the empirical
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estimates of volatility, covolatility, full volatility spillovers, and full and partial covolatility spillovers,
can be based on a firm foundation when the technical conditions are satisfied.

Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol,
which can be derived from a range of agricultural products, it is not surprising that there is a
topical and developing literature on the volatility and covolatility spillovers between the energy
and agricultural markets. Renewable energy sources (including wind, solar, hydro, wave, bio-mass,
and agricultural commodities, such as corn and sugarcane, which can be converted into bio-ethanol
as a renewable energy source), and nonrenewable fossil fuel energy sources (including coal, oil, gas
and nuclear energy), can have full and partial covolatility spillovers. Such serious and significant
possibilities emphasize how they are interconnected in terms of formulating portfolios of financial,
energy and agricultural commodities to obtain optimal hedge strategies for insuring loaases against
profits elsewhere in the portfolio.

Modelling and testing spillovers between these two markets has typically been based on
estimating multivariate conditional volatility models. A serious technical deficiency is that the
Quasi-Maximum Likelihood Estimates (QMLE) of the two most popular multivariate conditional
volatility models, namely the BEKK and DCC models, typically have no asymptotic properties, except
by assumption or under appropriate parametric assumptions, so that no valid statistical test of volatility
spillovers is possible.

The paper evaluated the theory and practice in testing for volatility spillovers between energy and
agricultural markets using the multivariate BEKK and DCC models, and provided recommendations
as to how such volatility and covolatility spillovers might be tested using valid statistical techniques.
Three new definitions of volatility and covolatility spillovers were given, and the different models
used in empirical applications were evaluated in terms of the new definitions and other criteria.

In an area as important as examining volatility and covolatility spillovers between the energy
and agricultural markets, greater care and attention needs to be placed on the mathematical and
statistical properties of the estimated univariate and especially multivariate conditional volatility
models. Otherwise, the selected portfolios of renewable energy sources and nonrenewable fossil fuel
energy sources will not be able to mitigate the financial risks against each other, and hence not be able
to achieve optimal hedge ratios.
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