183,062 research outputs found

    Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank

    Get PDF
    The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data

    Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment

    Get PDF
    Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value

    Optical selection rules of graphene nanoribbons

    Full text link
    Optical selection rules for one-dimensional graphene nanoribbons are analytically studied and clarified based on the tight-binding model. A theoretical explanation, through analyzing the velocity matrix elements and the features of wavefunctions, can account for the selection rules, which depend on the edge structure of nanoribbon, namely armchair or zigzag edges. The selection rule of armchair nanoribbons is \Delta J=0, and the optical transitions occur from the conduction to valence subbands of the same index. Such a selection rule originates in the relationships between two sublattices and between conduction and valence subbands. On the other hand, zigzag nanoribbons exhibit the selection rule |\Delta J|=odd, which results from the alternatively changing symmetry property as the subband index increases. An efficiently theoretical prediction on transition energies is obtained with the application of selection rules. Furthermore, the energies of band edge states become experimentally attainable via optical measurements

    On the Tidal Dissipation of Obliquity

    Full text link
    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ

    Numerical modeling of a table-top tunable Smith-Purcell Terahertz free-electron laser operating in the super-radiant regime

    Full text link
    Terahertz (THz) radiation occupies a very large portion of the electromagnetic spectrum and has generated much recent interest due to its ability to penetrate deep into many organic materials without the damage associated with ionizing radiation such as x-rays. One path for generating copious amount of tunable narrow-band THz radiation is based on the Smith-Purcell free-electron laser (SPFEL) effect. In this Letter we propose a simple concept for a compact two-stage tunable SPFEL operating in the superradiant regime capable of radiating at the grating's fundamental bunching frequency. We demonstrate its capabilities and performances via computer simulation using the conformal finite-difference time-domain electromagnetic solver {\sc vorpal}.Comment: 4 pages, 5 figures, accepted for publication in Applied Physics Letter

    Partonic Effects in Heavy Ion Collisions at RHIC

    Full text link
    Effects of partonic interactions in heavy ion collisions at RHIC are studied in a multiphase transport model (AMPT) that includes both initial partonic and final hadronic interactions.It is found that a large parton scattering cross section is needed to understand the measured elliptic flow of pions and two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest, Hungary, March 3-7, 200
    corecore