6,159 research outputs found
Fe alloy slurry and a compacting cumulate pile across Earth's inner-core boundary
Seismic observations show a reduced compressional-wave gradient at the base
of the outer core relative to the preliminary reference Earth model and seismic
wave asymmetry between the east-west hemispheres at the top of the inner core.
Here, we propose a model for the inner core boundary (ICB), where a slurry
layer forms through fractional crystallization of an Fe alloy at the base of
the outer core (F layer) above a compacting cumulate pile at the top of the
inner core (F' layer). Using recent mineral physics data, we show that
fractional crystallization of an Fe alloy (e.g., Fe-Si-O) with light element
partitioning can explain the observed reduced velocity gradient in the F layer,
in cases with a solid fraction of ~15(5)% in liquid with a compositional
gradient due to preferential light element partitioning into liquid. The
compacting cumulate pile in the F' layer may exhibit lateral variations in
thickness between the east-west hemispheres due to lateral variations of
large-scale heat flow in the outer core, which may explain the east-west
asymmetry observed in the seismic velocity. Our interpretations suggest that
the inner core with solid Fe alloy has a high shear viscosity of ~10^23 Pa s.Comment: v2, 39 pages with 10 figure
Synchrotron Mössbauer spectroscopic study of ferropericlase at high pressures and temperatures
The electronic spin state of Fe^(2+) in ferropericlase, (Mg_(0.75)Fe_(0.25))O, transitions from a high-spin (spin unpaired) to low-spin (spin paired) state within the Earth’s mid-lower mantle region. To better understand the local electronic environment of high-spin Fe^(2+) ions in ferropericlase near the transition, we obtained synchrotron Mössbauer spectra (SMS) of (Mg_(0.75),Fe_(0.25))O in externally heated and laser-heated diamond anvil cells at relevant high pressures and temperatures. Results show that the quadrupole splitting (QS) of the dominant high-spin Fe^(2+) site decreases with increasing temperature at static high pressure. The QS values at constant pressure are fitted to a temperature-dependent Boltzmann distribution model, which permits estimation of the crystal-field splitting energy (Δ_3) between the d_(xy_ and d_(xz) or d_(zy) orbitals of the t_(2g) states in a distorted octahedral Fe^(2+) site. The derived Δ_3 increases from approximately 36 meV at 1 GPa to 95 meV at 40 GPa, revealing that both high pressure and high temperature have significant effects on the 3d electronic shells of Fe^(2+) in ferropericlase. The SMS spectra collected from the laser-heated diamond cells within the time window of 146 ns also indicate that QS significantly decreases at very high temperatures. A larger splitting of the energy levels at high temperatures and pressures should broaden the spin crossover in ferropericlase because the degeneracy of energy levels is partially lifted. Our results provide information on the hyperfine parameters and crystal-field splitting energy of high-spin Fe^(2+) in ferropericlase at high pressures and temperatures, relevant to the electronic structure of iron in oxides in the deep lower mantle
The spin state of iron in minerals of Earth's lower mantle
The spin state of Fe(II) and Fe(III) at temperatures and pressures typical for the Earth's lower mantle is discussed. We predict an extended high-spin to low-spin crossover region along the geotherm for Fe-dilute systems depending on crystal-field splitting, pairing energy, and cooperative interactions. In particular, spin transitions in ferromagnesium silicate perovskite and ferropericlase, the dominant lower mantle components, should occur in a wide temperature-pressure range. We also derive a gradual volume change associated with such transitions in the lower mantle. The gradual density changes and the wide spin crossover regions seem incompatible with lower mantle stratification resulting from a spin transition
Ikbkap/Elp1 Deficiency Causes Male Infertility by Disrupting Meiotic Progression
Mouse Ikbkap gene encodes IKAP—one of the core subunits of Elongator—and is thought to be involved in transcription. However, the biological function of IKAP, particularly within the context of an animal model, remains poorly characterized. We used a loss-of-function approach in mice to demonstrate that Ikbkap is essential for meiosis during spermatogenesis. Absence of Ikbkap results in defects in synapsis and meiotic recombination, both of which result in increased apoptosis and complete arrest of gametogenesis. In Ikbkap-mutant testes, a few meiotic genes are down-regulated, suggesting IKAP's role in transcriptional regulation. In addition, Ikbkap-mutant testes exhibit defects in wobble uridine tRNA modification, supporting a conserved tRNA modification function from yeast to mammals. Thus, our study not only reveals a novel function of IKAP in meiosis, but also suggests that IKAP contributes to this process partly by exerting its effect on transcription and tRNA modification
Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate.
Type IIA topoisomerases (Top2s) manipulate the handedness of DNA crossovers by introducing a transient and protein-linked double-strand break in one DNA duplex, termed the DNA-gate, whose opening allows another DNA segment to be transported through to change the DNA topology. Despite the central importance of this gate-opening event to Top2 function, the DNA-gate in all reported structures of Top2-DNA complexes is in the closed state. Here we present the crystal structure of a human Top2 DNA-gate in an open conformation, which not only reveals structural characteristics of its DNA-conducting path, but also uncovers unexpected yet functionally significant conformational changes associated with gate-opening. This structure further implicates Top2's preference for a left-handed DNA braid and allows the construction of a model representing the initial entry of another DNA duplex into the DNA-gate. Steered molecular dynamics calculations suggests the Top2-catalyzed DNA passage may be achieved by a rocker-switch-type movement of the DNA-gate
Detection of subtle neurological alterations by the Catwalk XT gait analysis system
BACKGROUND: A new version of the CatWalk XT system was evaluated as a tool for detecting very subtle alteration in gait based on higher speed sample rate; the system could also demonstrate minor changes in neurological function. In this study, we evaluated the neurological outcome of sciatic nerve injury intervened by local injection of hyaluronic acid. Using the CatWalk XT system, we looked for differences between treated and untreated groups and differences within the same group as a function of time so as to assess the power of the Catwalk XT system for detecting subtle neurological change. METHODS: Peripheral nerve injury was induced in 36 Sprague–Dawley rats by crushing the left sciatic nerve using a vessel clamp. The animals were randomized into one of two groups: Group I: crush injury as the control; Group II: crush injury and local application with hyaluronic acid. These animals were subjected to neurobehavior assessment, histomorphology evaluation, and electrophysiology study periodically. These data were retrieved for statistical analysis. RESULTS: The density of neurofilament and S-100 over the distal end of crushed nerve showed significant differences either in inter-group comparison at various time points or intra-group comparison from 7 to 28 days. Neuronal structure architecture, axon counts, intensity of myelination, electrophysiology, and collagen deposition demonstrate significant differences between the two groups. There was significant difference of SFI and angle of ankle in inter- group analysis from 7 to 28 days, but there were no significant differences in SFI and angle of ankle at time points of 7 and 14 days. In the Cat Walk XT analysis, the intensity, print area, stance duration, and swing duration all showed detectable differences at 7, 14, 21, and 28 days, whereas there were no significant difference at 7 and 14 days with CatWalk 7 testing. In addition, there were no significant differences of step sequence or regularity index between the two versions. CONCLUSION: Hyaluronic acid augmented nerve regeneration as early as 7 days after crush injury. This subtle neurological alteration could be detected through the CatWalk XT gait analysis but not the SFI, angle of ankle, or CatWalk 7 methods
- …
