96,402 research outputs found
Towards Long-endurance Flight: Design and Implementation of a Variable-pitch Gasoline-engine Quadrotor
Majority of today's fixed-pitch, electric-power quadrotors have short flight
endurance ( 1 hour) which greatly limits their applications. This paper
presents a design methodology for the construction of a long-endurance
quadrotor using variable-pitch rotors and a gasoline-engine. The methodology
consists of three aspects. Firstly, the rotor blades and gasoline engine are
selected as a pair, so that sufficient lift can be comfortably provided by the
engine. Secondly, drivetrain and airframe are designed. Major challenges
include airframe vibration minimization and power transmission from one engine
to four rotors while keeping alternate rotors contra-rotating. Lastly, a PD
controller is tuned to facilitate preliminary flight tests. The methodology has
been verified by the construction and successful flight of our gasoline
quadrotor prototype, which is designed to have a flight time of 2 to 3 hours
and a maximum take-off weight of 10 kg.Comment: 6 page
Saturation of dephasing time in mesoscopic devices produced by a ferromagnetic state
We consider an exchange model of itinerant electrons in a Heisenberg
ferromagnet and we assume that the ferromagnet is in a fully polarized state.
Using the Holstein-Primakoff transformation we are able to obtain a
boson-fermion Hamiltonian that is well-known in the interaction between light
and matter. This model describes the spontaneous emission in two-level atoms
that is the proper decoherence mechanism when the number of modes of the
radiation field is taken increasingly large, the vacuum acting as a reservoir.
In the same way one can see that the interaction between the bosonic modes of
spin waves and an itinerant electron produces decoherence by spin flipping with
a rate proportional to the size of the system. In this way we are able to show
that the experiments on quantum dots, described in D. K. Ferry et al. [Phys.
Rev. Lett. {\bf 82}, 4687 (1999)], and nanowires, described in D. Natelson et
al. [Phys. Rev. Lett. {\bf 86}, 1821 (2001)], can be understood as the
interaction of itinerant electrons and an electron gas in a fully polarized
state.Comment: 10 pages, no figure. Changed title. Revised version accepted for
publication in Physical Review
Well-posedness of the Ericksen-Leslie system
In this paper, we prove the local well-posedness of the Ericksen-Leslie
system, and the global well-posednss for small initial data under the physical
constrain condition on the Leslie coefficients, which ensures that the energy
of the system is dissipated. Instead of the Ginzburg-Landau approximation, we
construct an approximate system with the dissipated energy based on a new
formulation of the system.Comment: 16 page
Toward a Deterministic Model of Planetary Formation IV: Effects of Type-I Migration
In a further development of a deterministic planet-formation model (Ida & Lin
2004), we consider the effect of type-I migration of protoplanetary embryos due
to their tidal interaction with their nascent disks. During the early embedded
phase of protostellar disks, although embryos rapidly emerge in regions
interior to the ice line, uninhibited type-I migration leads to their efficient
self-clearing. But, embryos continue to form from residual planetesimals at
increasingly large radii, repeatedly migrate inward, and provide a main channel
of heavy element accretion onto their host stars. During the advanced stages of
disk evolution (a few Myr), the gas surface density declines to values
comparable to or smaller than that of the minimum mass nebula model and type-I
migration is no longer an effective disruption mechanism for mars-mass embryos.
Over wide ranges of initial disk surface densities and type-I migration
efficiency, the surviving population of embryos interior to the ice line has a
total mass several times that of the Earth. With this reservoir, there is an
adequate inventory of residual embryos to subsequently assemble into rocky
planets similar to those around the Sun. But, the onset of efficient gas
accretion requires the emergence and retention of cores, more massive than a
few M_earth, prior to the severe depletion of the disk gas. The formation
probability of gas giant planets and hence the predicted mass and semimajor
axis distributions of extrasolar gas giants are sensitively determined by the
strength of type-I migration. We suggest that the observed fraction of
solar-type stars with gas giant planets can be reproduced only if the actual
type-I migration time scale is an order of magnitude longer than that deduced
from linear theories.Comment: 32 pages, 8 figures, 1 table, accepted for publication in Ap
LFV and Dipole Moments in Models with A4 Flavour Symmetry
It is presented an analysis on lepton flavour violating transitions, leptonic
magnetic dipole moments and electric dipole moments in a class of models
characterized by the flavour symmetry A4 x Z3 x U(1)_FN, whose choice is
motivated by the approximate Tri-Bimaximal mixing observed in neutrino
oscillations. A low-energy effective Lagrangian is constructed, where these
effects are dominated by dimension six operators, suppressed by the scale M of
new physics. All the flavour breaking effects are universally described by the
vacuum expectation values of a set of spurions. Two separate cases, a
supersymmetric and a general one, are described. An upper limit on the reactor
angle of a few percent is concluded.Comment: 10 pages, 1 figure. Adapted from a talk given at "DISCRETE'08:
Symposium on Prospects in the Physics of Discrete Symmetries", December 11-16
2008, Valencia, Spai
Calibration and Irradiation Study of the BGO Background Monitor for the BEAST II Experiment
Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism
for A STable experiment II (BEAST II) project is particularly designed to
measure the beam backgrounds around the interaction point of the SuperKEKB
collider for the Belle II experiment. We develop a system using bismuth
germanium oxide (BGO) crystals with optical fibers connecting to a multianode
photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA)
embedded readout board for monitoring the real-time beam backgrounds in BEAST
II. The overall radiation sensitivity of this system is estimated to be
Gy/ADU (analog-to-digital unit) with the standard
10 m fibers for transmission and the MAPMT operating at 700 V. Our -ray
irradiation study of the BGO system shows that the exposure of BGO crystals to
Co -ray doses of 1 krad has led to immediate light output
reductions of 25--40%, and the light outputs further drop by 30--45% after the
crystals receive doses of 2--4 krad. Our findings agree with those of the
previous studies on the radiation hard (RH) BGO crystals grown by the low
thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the
BGO system is also consistent with the simulation, and is estimated to be about
1.18 times the equivalent dose. These results prove that the BGO system is able
to monitor the background dose rate in real time under extreme high radiation
conditions. This study concludes that the BGO system is reliable for the beam
background study in BEAST II
Phase Separation of Bismuth Ferrite into Magnetite under Voltage Stressing
Micro-Raman studies show that under ~700 kV/cm of d.c. voltage stressing for
a few seconds, thin-film bismuth ferrite BiFeO3 phase separates into magnetite
Fe3O4. No evidence is found spectroscopically of hemite alpha-Fe2O3, maghemite
gamma-Fe2O3, or of Bi2O3. This relates to the controversy regarding the
magnitude of magnetization in BiFeO3.Comment: 9 pages and 2 figure
- …