3,277 research outputs found
Anomalous electronic Raman scattering in Na_xCoO_2 H_2O
Raman scattering experiments on Na_{x}CoO_2 yH_2O single crystals show a
broad electronic continuum with a pronounced peak around 100 cm-1 and a cutoff
at approximately 560 cm-1over a wide range of doping levels. The electronic
Raman spectra in superconducting and non-superconducting samples are similar at
room temperature, but evolve in markedly different ways with decreasing
temperature. For superconducting samples, the low-energy spectral weight is
depleted upon cooling below T* sim 150K, indicating a opening of a pseudogap
that is not present in non-superconducting materials. Weak additional phonon
modes observed below T* suggest that the pseudogap is associated with charge
ordering.Comment: 5 pages, 4 figures, for further information see www.peter-lemmens.d
Standards-based mathematics reforms and mathematics achievement of American Indian/Alaska Native eighth graders.
Using the NAEP nationally-representative data collected from eighth-graders, we investigated the relative exposure of American Indian/Alaska Native (AIAN) students to mathematics teachers who are knowledgeable about standards, participate in standards-based professional development, and practice standards-based instruction; American Indian/Alaska Native student reports of standards-based classroom activities; and how student reports of classroom activities and teacher reports of their knowledge, professional development, and practices are associated with mathematics achievement of American Indian/Alaska Native students. We found that AIAN students had among the lowest exposure to teachers who reported they were knowledgeable about standards, who participated in standards-based professional development, and who practiced standards-based instruction. In addition, AIAN students were less likely than African American and Latino students to report that they experienced standards-based classroom activities. Our data showed that teacher reports of standards-based knowledge and practice of standards-based instruction were not significantly associated with mathematics achievement of AIAN students. However, student reports of classroom activities characterizing standards-based instruction was associated with higher mathematics achievement of AIAN students
The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud
Using high-resolution SPH numerical simulations, we investigate the effects
of gas on the inspiral and merger of a massive black hole binary. This study is
motivated by both observational and theoretical work that indicate the presence
of large amounts of gas in the central regions of merging galaxies. N-body
simulations have shown that the coalescence of a massive black hole binary
eventually stalls in a stellar background. However, our simulations suggest
that the massive black hole binary will finally merge if it is embedded in a
gaseous background. Here we present results in which the gas is assumed to be
initially spherical with a relatively smooth distribution. In the early
evolution of the binary, the separation dimishes due to the gravitational drag
exerted by the background gas. In the later stages, when the binary dominates
the gravitational potential in its vicinity, the medium responds by forming an
ellipsoidal density enhancement whose axis lags behind the binary axis, and
this offset produces a torque on the binary that causes continuing loss of
angular momentum and is able to reduce the binary separation to distances where
gravitational radiation is efficient. Assuming typical parameters from
observations of Ultra Luminous Infrared Galaxies, we predict that a black hole
binary will merge within yrs; therefore these results imply that in a
merger of gas-rich galaxies, any massive central black holes will coalescence
soon after the galaxies merge. Our work thus supports scenarios of massive
black hole evolution and growth where hierarchical merging plays an important
role. The final coalescence of the black holes leads to gravitational radiation
emission that would be detectable up to high redshift by LISA. We show that
similar physical effects are important for the formation of close binary stars.Comment: 38 pages, 14 figures, submitted to Ap
Semiclassical Effects and the Onset of Inflation
We present a class of exact solutions to the constraint equations of General
Relativity coupled to a Klein - Gordon field, these solutions being isotropic
but not homogeneous. We analyze the subsequent evolution of the consistent
Cauchy data represented by those solutions, showing that only certain special
initial conditions eventually lead to successfull Inflationary cosmologies. We
argue, however, that these initial conditions are precisely the likely outcomes
of quantum events occurred before the inflationary era.Comment: 22 pages, file written in RevTe
Fermion Pairing Dynamics in the Relativistic Scalar Plasma
Using many-body techniques we obtain the time-dependent Gaussian
approximation for interacting fermion-scalar field models. This method is
applied to an uniform system of relativistic spin-1/2 fermion field coupled,
through a Yukawa term, to a scalar field in 3+1 dimensions, the so-called
quantum scalar plasma model. The renormalization for the resulting Gaussian
mean-field equations, both static and dynamical, are examined and initial
conditions discussed. We also investigate solutions for the gap equation and
show that the energy density has a single minimum.Comment: 21 pages, latex, 4 postscript figures, new sections, some literary
changes, notation corrections, accepted for publication in Phys. Rev
RNA-seq transcriptome analysis of male and female zebra finch cell lines
AbstractThe derivation of stably cultured cell lines has been critical to the advance of molecular biology. We profiled gene expression in the first two generally available cell lines derived from the zebra finch. Using Illumina RNA-seq, we generated ~93 million reads and mapped the majority to the recently assembled zebra finch genome. Expression of most Ensembl-annotated genes was detected, but over half of the mapped reads aligned outside annotated genes. The male-derived G266 line expressed Z-linked genes at a higher level than did the female-derived ZFTMA line, indicating persistence in culture of the distinctive lack of avian sex chromosome dosage compensation. Although these cell lines were not derived from neural tissue, many neurobiologically relevant genes were expressed, although typically at lower levels than in a reference sample from auditory forebrain. These cell lines recapitulate fundamental songbird biology and will be useful for future studies of songbird gene regulation and function
Explanation of the Gibbs paradox within the framework of quantum thermodynamics
The issue of the Gibbs paradox is that when considering mixing of two gases
within classical thermodynamics, the entropy of mixing appears to be a
discontinuous function of the difference between the gases: it is finite for
whatever small difference, but vanishes for identical gases. The resolution
offered in the literature, with help of quantum mixing entropy, was later shown
to be unsatisfactory precisely where it sought to resolve the paradox.
Macroscopic thermodynamics, classical or quantum, is unsuitable for explaining
the paradox, since it does not deal explicitly with the difference between the
gases. The proper approach employs quantum thermodynamics, which deals with
finite quantum systems coupled to a large bath and a macroscopic work source.
Within quantum thermodynamics, entropy generally looses its dominant place and
the target of the paradox is naturally shifted to the decrease of the maximally
available work before and after mixing (mixing ergotropy). In contrast to
entropy this is an unambiguous quantity. For almost identical gases the mixing
ergotropy continuously goes to zero, thus resolving the paradox. In this
approach the concept of ``difference between the gases'' gets a clear
operational meaning related to the possibilities of controlling the involved
quantum states. Difficulties which prevent resolutions of the paradox in its
entropic formulation do not arise here. The mixing ergotropy has several
counter-intuitive features. It can increase when less precise operations are
allowed. In the quantum situation (in contrast to the classical one) the mixing
ergotropy can also increase when decreasing the degree of mixing between the
gases, or when decreasing their distinguishability. These points go against a
direct association of physical irreversibility with lack of information.Comment: Published version. New title. 17 pages Revte
NbS: A unique quasi one-dimensional conductor with three charge density wave transitions
Through transport, compositional and structural studies, we review the
features of the charge-density wave (CDW) conductor of NbS (phase II). We
highlight three central results: 1) In addition to the previously reported CDW
transitions at = 360\,K and = 150\,K, another CDW transition
occurs at a much higher temperature = 620-650\,K; evidence for the
non-linear conductivity of this CDW is presented. 2) We show that CDW
associated with the - transition arises from S vacancies acting as
donors. Such a CDW transition has not been observed before. 3) We show
exceptional coherence of the -CDW at room-temperature. Additionally, we
report on the effects of uniaxial strain on the CDW transition temperatures and
transport.Comment: 16 pages, 18 figure
The Minimum Stellar Mass in Early Galaxies
The conditions for the fragmentation of the baryonic component during merging
of dark matter halos in the early Universe are studied. We assume that the
baryonic component undergoes a shock compression. The characteristic masses of
protostellar molecular clouds and the minimum masses of protostars formed in
these clouds decrease with increasing halo mass. This may indicate that the
initial stellar mass function in more massive galaxies was shifted towards
lower masses during the initial stages of their formation. This would result in
an increase of the number of stars per unit halo mass, i.e., the efficiency of
star formation.Comment: 18 pages, 7 figure
Algebraic Geometry Approach to the Bethe Equation for Hofstadter Type Models
We study the diagonalization problem of certain Hofstadter-type models
through the algebraic Bethe ansatz equation by the algebraic geometry method.
When the spectral variables lie on a rational curve, we obtain the complete and
explicit solutions for models with the rational magnetic flux, and discuss the
Bethe equation of their thermodynamic flux limit. The algebraic geometry
properties of the Bethe equation on high genus algebraic curves are
investigated in cooperationComment: 28 pages, Latex ; Some improvement of presentations, Revised version
with minor changes for journal publicatio
- …