56,380 research outputs found

    New 16-PSK trellis codes for fading channels

    Get PDF
    Growth in satellite mobile communications leads to increasing requirements for high data rate transmission that can be met by more efficient modulation schemes (M greater than 8). The 16-PSK trellis coded modulation technique is a very promising solution. A class of new 16-PSK trellis codes with improved error rate are designed based on the criteria on fading channels

    DDˉD^*\bar D^* molecule interpretation of Zc(4025)Z_c(4025)

    Full text link
    We have used QCD sum rules to study the newly observed charged state Zc(4025)Z_c(4025) as a hidden-charm DDˉD^*\bar D^* molecular state with the quantum numbers IG(JP)=1+(1+)I^G(J^{P})=1^+(1^{+}). Using a DDˉD^*\bar D^* molecular interpolating current, we have calculated the two-point correlation function and the spectral density up to dimension eight at leading order in αs\alpha_s. The extracted mass is mX=(4.04±0.24)m_X=(4.04\pm0.24) GeV. This result is compatible with the observed mass of Zc(4025)Z_c(4025) within the errors, which implies a possible molecule interpretation of this new resonance. We also predict the mass of the corresponding hidden-bottom BBˉB^*\bar B^* molecular state: mZb=(9.98±0.21)m_{Z_b}=(9.98\pm0.21) GeV.Comment: 6 pages, 5 figures. Version appears in Eur. Phys. J.

    Exotic QQqˉqˉQQ\bar{q}\bar{q}, QQqˉsˉQQ\bar{q}\bar{s} and QQsˉsˉQQ\bar{s}\bar{s} states

    Full text link
    After constructing the possible JP=0,0+,1J^P=0^-, 0^+, 1^- and 1+1^+ QQqˉqˉQQ\bar{q}\bar{q} tetraquark interpolating currents in a systematic way, we investigate the two-point correlation functions and extract the corresponding masses with the QCD sum rule approach. We study the QQqˉqˉQQ\bar{q}\bar{q}, QQqˉsˉQQ\bar{q}\bar{s} and QQsˉsˉQQ\bar{s}\bar{s} systems with various isospins I=0,1/2,1I=0, 1/2, 1. Our numerical analysis indicates that the masses of doubly-bottomed tetraquark states are below the threshold of the two bottom mesons, two bottom baryons and one doubly bottomed baryon plus one anti-nucleon. Very probably these doubly-bottomed tetraquark states are stable.Comment: 37 pages, 2 figure

    Implications of chiral symmetry on SS-wave pionic resonances and the scalar charmed mesons

    Full text link
    The chiral symmetry of QCD requires energy-dependent pionic strong interactions at low energies. This constraint, however, is not fulfilled by the usual Breit--Wigner parameterization of pionic resonances, leading to masses larger than the real ones. We derive relations between nonleptonic three-body decays of the BB-meson into a DD-meson and a pair of light pseudoscalar mesons based on SU(3) chiral symmetry. Employing effective field theory methods, we demonstrate that taking into account the final-state interactions, the experimental data of the decays BD+ππB^-\to D^+\pi^-\pi^-, Bs0Dˉ0Kπ+B_s^0\to \bar{D}^0K^-\pi^+, B0Dˉ0ππ+B^0\to\bar{D}^0\pi^-\pi^+, BD+πKB^-\to D^+\pi^-K^- and B0Dˉ0πK+B^0\to\bar{D}^0\pi^-K^+ can all be described by the nonperturbative π/η/K\pi/\eta/K-D/DsD/D_s scattering amplitudes previously obtained from a combination of chiral effective field theory and lattice QCD calculations. The results provide a strong support of the scenario that the broad scalar charmed meson D0(2400)D^\ast_0(2400) should be replaced by two states, the lower one of which has a mass of around 2.1 GeV, much smaller than that extracted from experimental data using a Breit--Wigner parameterization.Comment: 26 pages, 9 figuere

    One-loop renormalization of the chiral Lagrangian for spinless matter fields in the SU(N) fundamental representation

    Full text link
    We perform the leading one-loop renormalization of the chiral Lagrangian for spinless matter fields living in the fundamental representation of SU(N). The Lagrangian can also be applied to any theory with a spontaneous symmetry breaking of SU(N)L×SU(N)RSU(N)_L\times SU(N)_R to SU(N)VSU(N)_V and spinless matter fields in the fundamental representation. For QCD, the matter fields can be kaons or pseudoscalar heavy mesons. Using the background field method and heat kernel expansion techniques, the divergences of the one-loop effective generating functional for correlation functions of single matter fields are calculated up to O(p3)\mathcal{O}(p^3). They are absorbed by counterterms not only from the third order but also from the second order chiral Lagrangian.Comment: 13 page
    corecore