9,087 research outputs found

    Optimizing Average-Maximum TTR Trade-off for Cognitive Radio Rendezvous

    Full text link
    In cognitive radio (CR) networks, "TTR", a.k.a. time-to-rendezvous, is one of the most important metrics for evaluating the performance of a channel hopping (CH) rendezvous protocol, and it characterizes the rendezvous delay when two CRs perform channel hopping. There exists a trade-off of optimizing the average or maximum TTR in the CH rendezvous protocol design. On one hand, the random CH protocol leads to the best "average" TTR without ensuring a finite "maximum" TTR (two CRs may never rendezvous in the worst case), or a high rendezvous diversity (multiple rendezvous channels). On the other hand, many sequence-based CH protocols ensure a finite maximum TTR (upper bound of TTR) and a high rendezvous diversity, while they inevitably yield a larger average TTR. In this paper, we strike a balance in the average-maximum TTR trade-off for CR rendezvous by leveraging the advantages of both random and sequence-based CH protocols. Inspired by the neighbor discovery problem, we establish a design framework of creating a wake-up schedule whereby every CR follows the sequence-based (or random) CH protocol in the awake (or asleep) mode. Analytical and simulation results show that the hybrid CH protocols under this framework are able to achieve a greatly improved average TTR as well as a low upper-bound of TTR, without sacrificing the rendezvous diversity.Comment: Accepted by IEEE International Conference on Communications (ICC 2015, http://icc2015.ieee-icc.org/

    On Heterogeneous Neighbor Discovery in Wireless Sensor Networks

    Full text link
    Neighbor discovery plays a crucial role in the formation of wireless sensor networks and mobile networks where the power of sensors (or mobile devices) is constrained. Due to the difficulty of clock synchronization, many asynchronous protocols based on wake-up scheduling have been developed over the years in order to enable timely neighbor discovery between neighboring sensors while saving energy. However, existing protocols are not fine-grained enough to support all heterogeneous battery duty cycles, which can lead to a more rapid deterioration of long-term battery health for those without support. Existing research can be broadly divided into two categories according to their neighbor-discovery techniques---the quorum based protocols and the co-primality based protocols.In this paper, we propose two neighbor discovery protocols, called Hedis and Todis, that optimize the duty cycle granularity of quorum and co-primality based protocols respectively, by enabling the finest-grained control of heterogeneous duty cycles. We compare the two optimal protocols via analytical and simulation results, which show that although the optimal co-primality based protocol (Todis) is simpler in its design, the optimal quorum based protocol (Hedis) has a better performance since it has a lower relative error rate and smaller discovery delay, while still allowing the sensor nodes to wake up at a more infrequent rate.Comment: Accepted by IEEE INFOCOM 201

    (Methanol-κO)(methano­lato-κO)oxido[N-(2-oxidobenzyl­idene)phenyl­alaninato-κ3 O,N,O′]vanadium(V)

    Get PDF
    In the title complex, [V(C16H13NO3)(CH3O)O(CH3OH)], the VV atom is six-coordinated by a tridentate ligand derived from the condensation of salicyl­aldehyde and l-phenyl­alanine, a vanadyl O atom, a methano­late O atom and a methanol O atom, forming a distorted octa­hedral coordination geometry. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds result in a two-dimensional structure parallel to (001)

    The z < 1.2 optical luminosity function from a sample of ∼410,000 galaxies in Boötes

    Get PDF
    Using a sample of ~410,000 galaxies to a depth of IAB=24 over 8.26 deg2 in the Boötes field (~10 times larger than the z~1 luminosity function (LF) studies in the prior literature), we have accurately measured the evolving B-band LF of red galaxies at z&lt;1.2 and blue galaxies at z&lt;1.0 In addition to the large sample size, we utilize photometry that accounts for the varying angular sizes of galaxies, photometric redshifts verified with spectroscopy, and absolute magnitudes that should have very small random and systematic errors. Our results are consistent with the migration of galaxies from the blue cloud to the red sequence as they cease to form stars and with downsizing in which more massive and luminous blue galaxies cease star formation earlier than fainter less massive ones. Comparing the observed fading of red galaxies with that expected from passive evolution alone, we find that the stellar mass contained within the red galaxy population has increased by a factor of ~3.6 from z~1.1 to z~0.1 The bright end of the red galaxy LF fades with decreasing redshift, with the rate of fading increasing from ~0.2 mag per unit redshift at z = 1.0 to ~0.8 at z = 0.2. The overall decrease in luminosity implies that the stellar mass in individual highly luminous red galaxies increased by a factor of ~2.2 from z = 1.1 to z = 0.1

    The ISM Analysis on Influence Factors of Cost Control in the Wind Power Construction Project

    Get PDF
    AbstractCost control in the wind power construction project is essential under the trend of developing wind power in China. In order to carry out cost control effectively, structural interpretation model(ISM) is used to identify and analyze the major factors that affect the implementation of cost control and the hierarchy relationships between each other. In this way, the surface causes, the middle causes and the underlying causes that affect the cost control in the wind power construction project have been found, which provides decision theory for the smooth implementation of cost control in China's current wind power construction projects
    corecore