78,111 research outputs found

    Nonuniversal Effects in the Homogeneous Bose Gas

    Full text link
    Effective field theory predicts that the leading nonuniversal effects in the homogeneous Bose gas arise from the effective range for S-wave scattering and from an effective three-body contact interaction. We calculate the leading nonuniversal contributions to the energy density and condensate fraction and compare the predictions with results from diffusion Monte Carlo calculations by Giorgini, Boronat, and Casulleras. We give a crude determination of the strength of the three-body contact interaction for various model potentials. Accurate determinations could be obtained from diffusion Monte Carlo calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te

    Large collective Lamb shift of two distant superconducting artificial atoms

    Get PDF
    Virtual photons can mediate interaction between atoms, resulting in an energy shift known as a collective Lamb shift. Observing the collective Lamb shift is challenging, since it can be obscured by radiative decay and direct atom-atom interactions. Here, we place two superconducting qubits in a transmission line terminated by a mirror, which suppresses decay. We measure a collective Lamb shift reaching 0.8% of the qubit transition frequency and exceeding the transition linewidth. We also show that the qubits can interact via the transmission line even if one of them does not decay into it.Comment: 7+5 pages, 4+2 figure

    Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods

    Full text link
    This article is devoted to computing the lower and upper bounds of the Laplace eigenvalue problem. By using the special nonconforming finite elements, i.e., enriched Crouzeix-Raviart element and extension Q1rotQ_1^{\rm rot}, we get the lower bound of the eigenvalue. Additionally, we also use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue. The postprocessing method need only to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once. Some numerical results are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure

    Long-term X-ray Variability of Ultraluminous X-ray Sources

    Get PDF
    Long-term X-ray modulations on timescales from tens to hundreds of days have been widely studied for X-ray binaries located in the Milky Way and the Magellanic Clouds. For other nearby galaxies, only the most luminous X-ray sources can be monitored with dedicated observations. We here present the first systematic study of long-term X-ray variability of four ultraluminous X-ray sources (ESO 243-49 HLX-1, Holmberg IX X-1, M81 X-6, and NGC 5408 X-1) monitored with Swift. By using various dynamic techniques to analyse their light curves, we find several interesting low-frequency quasi-periodicities. Although the periodic signals may not represent any stable orbital modulations, these detections reveal that such long-term regular patterns may be related to superorbital periods and structure of the accretion discs. In particular, we show that the outburst recurrence time of ESO 243-49 HLX-1 varies over time and suggest that it may not be the orbital period. Instead, it may be due to some kinds of precession, and the true binary period is expected to be much shorter.Comment: 15 pages, 8 figures; accepted for publication in MNRA

    Discovery of X-ray pulsations from "next Geminga" - PSR J1836+5925

    Get PDF
    We report the X-ray pulsation of ~173.3 ms for the "next Geminga", PSR J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded light curve has a sinusoidal structure which is different from the double-peaked gamma-ray pulse profile. We have also analysed the X-ray phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is thermal dominant. This suggests the X-ray pulsation mainly originates from the modulated hot spot on the stellar surface.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ Lette

    A Comprehensive View of the 2006 December 13 CME: From the Sun to Interplanetary Space

    Full text link
    The biggest halo coronal mass ejection (CME) since the Halloween storm in 2003, which occurred on 2006 December 13, is studied in terms of its solar source and heliospheric consequences. The CME is accompanied by an X3.4 flare, EUV dimmings and coronal waves. It generated significant space weather effects such as an interplanetary shock, radio bursts, major solar energetic particle (SEP) events, and a magnetic cloud (MC) detected by a fleet of spacecraft including STEREO, ACE, Wind and Ulysses. Reconstruction of the MC with the Grad-Shafranov (GS) method yields an axis orientation oblique to the flare ribbons. Observations of the SEP intensities and anisotropies show that the particles can be trapped, deflected and reaccelerated by the large-scale transient structures. The CME-driven shock is observed at both the Earth and Ulysses when they are separated by 74^{\circ} in latitude and 117^{\circ} in longitude, the largest shock extent ever detected. The ejecta seems missed at Ulysses. The shock arrival time at Ulysses is well predicted by an MHD model which can propagate the 1 AU data outward. The CME/shock is tracked remarkably well from the Sun all the way to Ulysses by coronagraph images, type II frequency drift, in situ measurements and the MHD model. These results reveal a technique which combines MHD propagation of the solar wind and type II emissions to predict the shock arrival time at the Earth, a significant advance for space weather forecasting especially when in situ data are available from the Solar Orbiter and Sentinels.Comment: 26 pages, 10 figures. 2008, ApJ, in pres

    Frequency Locking in Spatially Extended Systems

    Full text link
    A variant of the complex Ginzburg-Landau equation is used to investigate the frequency locking phenomena in spatially extended systems. With appropriate parameter values, a variety of frequency-locked patterns including flats, π\pi fronts, labyrinths and 2π/32\pi/3 fronts emerge. We show that in spatially extended systems, frequency locking can be enhanced or suppressed by diffusive coupling. Novel patterns such as chaotically bursting domains and target patterns are also observed during the transition to locking

    Two resonant magnetic modes in an overdoped high-Tc\bf T_c superconductor

    Full text link
    A detailed inelastic neutron scattering study of the overdoped high temperature copper oxide superconductor Y0.9Ca0.1Ba2Cu3O7{Y_{0.9}Ca_{0.1}Ba_{2}Cu_3O_{7}} reveals two distinct magnetic resonant modes in the superconducting state. The modes differ in their symmetry with respect to exchange between adjacent copper oxide layers. Counterparts of the mode with odd symmetry, but not the one with even symmetry, had been observed before at lower doping levels. The observation of the even mode resolves a long-standing puzzle, and the spectral weight ratio of both modes yields an estimate of the onset of particle-hole spin-flip excitations.Comment: Submitted to PR
    corecore