8,507 research outputs found
An Intelligent Auxiliary Vacuum Brake System
The purpose of this paper focuses on designing an intelligent, compact, reliable, and robust auxiliary vacuum brake system (VBS) with Kalman filter and self-diagnosis scheme. All of the circuit elements in the designed system are integrated into one programmable system-on-chip (PSoC) with entire computational algorithms implemented by software. In this system, three main goals are achieved: (a) Kalman filter and hysteresis controller algorithms are employed within PSoC chip by software to surpass the noises and disturbances from hostile surrounding in a vehicle. (b) Self-diagnosis scheme is employed to identify any breakdown element of the auxiliary vacuum brake system. (c) Power MOSFET is utilized to implement PWM pump control and compared with relay control. More accurate vacuum pressure control has been accomplished as well as power energy saving. In the end, a prototype has been built and tested to confirm all of the performances claimed above
Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine
Hydrogels immobilized with biomimetic peptides have been used widely for tissue engineering and drug delivery applications. Photopolymerization has been among the most commonly used techniques to fabricate peptide-immobilized hydrogels as it offers rapid and robust peptide immobilization within a crosslinked hydrogel network. Both chain-growth and step-growth photopolymerizations can be used to immobilize peptides within covalently crosslinked hydrogels. A previously developed visible light mediated step-growth thiol-norbornene gelation scheme has demonstrated efficient crosslinking of hydrogels composed of an inert poly(ethylene glycol)-norbornene (PEGNB) macromer and a small molecular weight bis-thiol linker, such as dithiothreitol (DTT). Compared with conventional visible light mediated chain-polymerizations where multiple initiator components are required, step-growth photopolymerized thiol-norbornene hydrogels are more cytocompatible for the in situ encapsulation of radical sensitive cells (e.g., pancreatic β-cells). This contribution explored visible light based crosslinking of various bis-cysteine containing peptides with macromer 8-arm PEGNB to form biomimetic hydrogels suitable for in situ cell encapsulation. It was found that the addition of soluble tyrosine during polymerization not only significantly accelerated gelation, but also improved the crosslinking efficiency of PEG-peptide hydrogels as evidenced by a decreased gel point and enhanced gel modulus. In addition, soluble tyrosine drastically enhanced the cytocompatibility of the resulting PEG-peptide hydrogels, as demonstrated by in situ encapsulation and culture of pancreatic MIN6 β-cells. This visible light based thiol-norbornene crosslinking mechanism provides an attractive gelation method for preparing cytocompatible PEG-peptide hydrogels for tissue engineering applications
Attention Allocation for Human Multi-Robot Control: Cognitive Analysis based on Behavior Data and Hidden States
Human multi-robot interaction exploits both the human operator’s high-level decision-making skills and the robotic agents’ vigorous computing and motion abilities. While controlling multi-robot teams, an operator’s attention must constantly shift between individual robots to maintain sufficient situation awareness. To conserve an operator’s attentional resources, a robot with self reflect capability on its abnormal status can help an operator focus her attention on emergent tasks rather than unneeded routine checks. With the proposing self-reflect aids, the human-robot interaction becomes a queuing framework, where the robots act as the clients to request for interaction and an operator acts as the server to respond these job requests. This paper examined two types of queuing schemes, the self-paced Open-queue identifying all robots’ normal/abnormal conditions, whereas the forced-paced shortest-job-first (SJF) queue showing a single robot’s request at one time by following the SJF approach. As a robot may miscarry its experienced failures in various situations, the effects of imperfect automation were also investigated in this paper. The results suggest that the SJF attentional scheduling approach can provide stable performance in both primary (locate potential targets) and secondary (resolve robots’ failures) tasks, regardless of the system’s reliability levels. However, the conventional results (e.g., number of targets marked) only present little information about users’ underlying cognitive strategies and may fail to reflect the user’s true intent. As understanding users’ intentions is critical to providing appropriate cognitive aids to enhance task performance, a Hidden Markov Model (HMM) is used to examine operators’ underlying cognitive intent and identify the unobservable cognitive states. The HMM results demonstrate fundamental differences among the queuing mechanisms and reliability conditions. The findings suggest that HMM can be helpful in investigating the use of human cognitive resources under multitasking environments
Microwave plasma-assisted photoluminescence enhancement in nitrogendoped ultrananocrystalline diamond film
[[booktype]]電子
A Retrospective Cohort Study Comparing Stroke Recurrence Rate in Ischemic Stroke Patients With and Without Acupuncture Treatment.
Little was known about the effects of acupuncture on stroke recurrence. The aim of this study is to investigate whether ischemic stroke patients receiving acupuncture treatment have a decreased risk of stroke recurrence. A retrospective cohort study of 30,058 newly diagnosed cases of ischemic stroke in 2000 to 2004 was conducted based on the claims of Taiwan National Health Insurance Research Database. The use of acupuncture treatment and stroke recurrence were identified during the follow-up period from 2000 to 2009. This study compared the risk of stroke recurrence between ischemic stroke cohorts with and without acupuncture treatment by calculating adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) of acupuncture associated with stroke recurrence in the Cox proportional hazard model. The stroke recurrence rate per 1000 person-years decreased from 71.4 without to 69.9 with acupuncture treatment (P < 0.001). Acupuncture treatment was associated with reduced risk of stroke recurrence (HR 0.88; 95% CI 0.84-0.91). The acupuncture effect was noted in patients with or without medical treatment for stroke prevention but its impact decreased with aging of stroke patients. Compared with stroke patients without acupuncture treatment and medication therapy, the hazard ratios of stroke recurrence for those had medication therapy only, acupuncture only, and both were 0.42 (95% CI 0.38-0.46), 0.50 (95% CI 0.43-0.57), and 0.39 (95% CI 0.35-0.43), respectively. This study raises the possibility that acupuncture might be effective in lowering stroke recurrence rate even in those on medications for stroke prevention. Results suggest the need of prospective sham-controlled and randomized trials to establish the efficacy of acupuncture in preventing stroke
Pyrrolidinyl caffeamide against ischemia/reperfusion injury in cardiomyocytes through AMPK/AKT pathways
BACKGROUND: Coronary heart disease is a leading cause of death in the world and therapy to reduce injury is still needed. The uncoupling of glycolysis and glucose oxidation induces lactate accumulation during myocardial ischemia/reperfusion (I/R) injury. Cell death occurs and finally leads to myocardial infarction. Caffeic acid, one of the major phenolic constituents in nature, acts as an antioxidant. Pyrrolidinyl caffeamide (PLCA), a new derivative of caffeic acid, was synthesized by our team. We aimed to investigate the effect of PLCA on hypoxia/reoxygenation (H/R) in neonatal rat ventricular myocytes (NRVM) and on myocardial I/R in rats. RESULTS: Cardiomyocytes were isolated and subjected to 6 h hypoxia followed by 18 h reperfusion. PLCA (0.1 to 3 μM) and metformin (30 μM) were added before hypoxia was initiated. PLCA at 1 μM and metformin at 30 μM exerted similar effects on the improvement of cell viability and the alleviation of cell apoptosis in NRVM after H/R. PLCA promoted p-AMPK, p-AKT, and GLUT4 upregulation to induce a cardioprotective effect in both cell and animal model. The accumulation of cardiac lactate was attenuated by PLCA during myocardial I/R, and infarct size was smaller in rats treated with PLCA (1 mg/kg) than in those treated with caffeic acid (1 mg/kg). CONCLUSIONS: AMPK and AKT are synergistically activated by PLCA, which lead facilities glucose utilization, thereby attenuating lactate accumulation and cell death. The cardioprotective dose of PLCA was lower than those of metformin and caffeic acid. We provide a new insight into this potential drug for the treatment of myocardial I/R injury
- …
