4,131 research outputs found

    Sonochemistry of Selected Hydrocarbons, Sulfur-containing and Nitrogen-containing Organic Compounds in Aqueous Solutions and Nonaqueous Liquids

    Get PDF
    The sonochemical products, mechanisms, kinetics, and effective factors of selected cyclic and aliphatic C6HX, thiophenes, thioethers, and N-heterocyclic compounds in aqueous solutions and nonaqueous liquids have been investigated in this work. The transfer of volatile organic substrate from bulk liquid into cavitation bubbles is essential for the sonolysis. Instead of vapor pressure, the hydrophobicity or lipophilicity of the volatile organic substrate dominates the mass transfer and the sonolysis. Also, most of products stem from the pyrolysis of substrate in collapsing cavitation bubbles, and the reactivity of organic substrate with the active intermediates generated in situ during the sonication, profoundly affects the sonochemical reaction in bulk liquid. Moreover, the lower initial concentration of volatile substrate is favorable to the aquasonolysis, and the low liquid temperature or low vapor pressure of substrate can enhance the sonolysis of organic liquid

    A Spatial Investigation of ƒÐ-Convergence in China

    Get PDF
    Using techniques of spatial econometrics, this paper investigates ƒÐ-convergence of provincial real per capita gross domestic product (GDP) in China. The empirical evidence concludes that spatial dependence across regions is strong enough to distort the traditional measure of ƒÐ-convergence. This study focuses on the variation of per capita GDP that is dependent on the development processes of neighboring provinces and cities. This refinement of the conditional ƒÐ-convergence model specification allows for analysis of spatial dependence in the mean and variance. The corrected measure of ƒÐ-convergence in China indicates a lower level of dispersion in the economic development process. This implies a smaller divergence in real per capita GDP, although convergence across regions is still a challenging goal to achieve in the 2000s.ƒÐ-Convergence, Moran's index, spatial dependence, spatial lag

    Estimate black hole masses of AGNs using ultraviolet emission line properties

    Full text link
    Based on the measured sizes of broad line region of the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z>0.5z > 0.5) AGNs. First, using the archival IUE/HSTIUE/HST spectroscopy data at UV band for the reverberation-mapping objects, we obtained two new empirical relations between the BLR size and \Mg/\C emission line luminosity. Secondly, using the newly determined black hole masses of the reverberation-mapping sample for calibration, two new relationships for determination of black hole mass with the full width of half maximum and the luminosity of \Mg/\C line are also found. We then apply the relations to estimate the black hole masses of AGNs in Large Bright Quasar Surveyq and a sample of radio-loud quasars. For the objects with small radio-loudness, the black hole mass estimated using the R_{\rm BLR} - L_{\eMg/\eC} relation is consistent with that from the RBLRL3000A˚/1350A˚R_{BLR} - L_{3000\AA/1350 \AA} relation. But for radio-loud AGNs, the mass estimated from the R_{BLR} - L_{\eMg/\eC} relation is systematically lower than that from the continuum luminosity L3000A˚/1350A˚L_{3000\AA/1350\AA}. Because jets could have significant contributions to the UV/optical continuum luminosity of radio-loud AGNs, we emphasized again that for radio-loud AGNs, the emission line luminosity may be a better tracer of the ionizing luminosity than the continuum luminosity, so that the relations between the BLR size and UV emission line luminosity should be used to estimate the black hole masses of high redshift radio-loud AGNs.Comment: 19 pages, 10 figure

    Projected Density Matrix Embedding Theory with Applications to the Two-Dimensional Hubbard Model

    Get PDF
    Density matrix embedding theory (DMET) is a quantum embedding theory for strongly correlated systems. From a computational perspective, one bottleneck in DMET is the optimization of the correlation potential to achieve self-consistency, especially for heterogeneous systems of large size. We propose a new method, called projected density matrix embedding theory (p-DMET), which achieves self-consistency without needing to optimize a correlation potential. We demonstrate the performance of p-DMET on the two-dimensional Hubbard model.Comment: 25 pages, 8 figure
    corecore