226 research outputs found

    Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search

    Full text link
    Despite substantial interest in applications of neural networks to information retrieval, neural ranking models have only been applied to standard ad hoc retrieval tasks over web pages and newswire documents. This paper proposes MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Network) a novel neural ranking model specifically designed for ranking short social media posts. We identify document length, informal language, and heterogeneous relevance signals as features that distinguish documents in our domain, and present a model specifically designed with these characteristics in mind. Our model uses hierarchical convolutional layers to learn latent semantic soft-match relevance signals at the character, word, and phrase levels. A pooling-based similarity measurement layer integrates evidence from multiple types of matches between the query, the social media post, as well as URLs contained in the post. Extensive experiments using Twitter data from the TREC Microblog Tracks 2011--2014 show that our model significantly outperforms prior feature-based as well and existing neural ranking models. To our best knowledge, this paper presents the first substantial work tackling search over social media posts using neural ranking models.Comment: AAAI 2019, 10 page

    Prediction of PEV Adoption with Agent-Based Parameterized Bass Network Diffusion Model

    Full text link
    Although the growing electric vehicle (EV) population is leading us into a more sustainable world, it is also bringing challenges for the manufacturers's production planning, the charging facility providers's expansion plan, and the energy system's adaption to greater electricity demand. To tackle these challenges, a model to predict EV growth in geographical scope would be helpful. In this study, an agent-based parameterized bass network diffusion model was developed for EV population data in Washington. The model included income levels and number of neighbors adopted as two key factors in determining EV diffusion probabilities. With the parameters estimated from simulation, the resulting model achieve a high estimation accuracy for EV adoption in Washington in both temporal and geographical scopes. This model could be used to predict EV growth in Washington, and to be adopted to other geographical areas

    Episodic Bayesian Optimal Control with Unknown Randomness Distributions

    Full text link
    Stochastic optimal control with unknown randomness distributions has been studied for a long time, encompassing robust control, distributionally robust control, and adaptive control. We propose a new episodic Bayesian approach that incorporates Bayesian learning with optimal control. In each episode, the approach learns the randomness distribution with a Bayesian posterior and subsequently solves the corresponding Bayesian average estimate of the true problem. The resulting policy is exercised during the episode, while additional data/observations of the randomness are collected to update the Bayesian posterior for the next episode. We show that the resulting episodic value functions and policies converge almost surely to their optimal counterparts of the true problem if the parametrized model of the randomness distribution is correctly specified. We further show that the asymptotic convergence rate of the episodic value functions is of the order O(N−1/2)O(N^{-1/2}). We develop an efficient computational method based on stochastic dual dynamic programming for a class of problems that have convex value functions. Our numerical results on a classical inventory control problem verify the theoretical convergence results and demonstrate the effectiveness of the proposed computational method

    Pathological Evidence Exploration in Deep Retinal Image Diagnosis

    Full text link
    Though deep learning has shown successful performance in classifying the label and severity stage of certain disease, most of them give few evidence on how to make prediction. Here, we propose to exploit the interpretability of deep learning application in medical diagnosis. Inspired by Koch's Postulates, a well-known strategy in medical research to identify the property of pathogen, we define a pathological descriptor that can be extracted from the activated neurons of a diabetic retinopathy detector. To visualize the symptom and feature encoded in this descriptor, we propose a GAN based method to synthesize pathological retinal image given the descriptor and a binary vessel segmentation. Besides, with this descriptor, we can arbitrarily manipulate the position and quantity of lesions. As verified by a panel of 5 licensed ophthalmologists, our synthesized images carry the symptoms that are directly related to diabetic retinopathy diagnosis. The panel survey also shows that our generated images is both qualitatively and quantitatively superior to existing methods.Comment: to appear in AAAI (2019). The first two authors contributed equally to the paper. Corresponding Author: Feng L

    Microfiber-based polarization beam splitter and its application for passively mode-locked all-fiber laser

    Get PDF
    Nonlinear polarization evolution based on polarization beam splitter (PBS) is a classical technique for passive mode-locking of fiber lasers. Different from commonly used bulky PBS, in this paper all-fiber PBSs composed of two parallel coupled microfibers have been proposed and fabricated under the condition of appropriate microfiber diameter and coupling length. Using our fabricated microfiber PBSs, passively mode-locked all-fiber lasers have also been demonstrated. The results indicate that the microfiber-based PBS has advantages of simple fabrication, compact size, and most importantly, variable polarization extinction ratio and operation bandwidth. The all-fiber mode-locked lasers with the microfiber PBSs generating stable pulses at both 1.0 μm and 1.5 μm wavelength bands have comparable performance with their counterparts based on bulky PBSs. It may be a step towards true all-fiber mode-locked laser and other all-fiber systems

    Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc

    Full text link
    Ultrathin MgB2 superconducting films with a thickness down to 7.5 nm are epitaxially grown on (0001) Al2O3 substrate by hybrid physical-chemical vapor deposition method. The films are phase-pure, oxidation-free and continuous. The 7.5 nm thin film shows a Tc(0) of 34 K, which is so far the highest Tc(0) reported in MgB2 with the same thickness. The critical current density of ultrathin MgB2 films below 10 nm is demonstrated for the first time as Jc ~ 10^6 A cm^{-2} for the above 7.5 nm sample at 16 K. Our results reveal the excellent superconducting properties of ultrathin MgB2 films with thicknesses between 7.5 and 40 nm on Al2O3 substrate.Comment: 7 pages, 4 figures, 2 table
    • …
    corecore