66 research outputs found

    The Effect of Normal Force on the Coupled Temperature Field of Metal Impregnation Carbon/Stainless Steel under the Friction and Wear with Electric Current

    Get PDF
    AbstractTemperature field model for aluminum-stainless steel composite conductor rail (stainless steel)/collector shoe (metal impregnation carbon) under the coupling of contact resistor-friction thermal was established by FE software ANSYS. The temperature field distribution model of the friction pair was simulated and the maximum coupled temperature changing with different normal force was researched. The results show that the maximum coupled temperatures decrease firstly and then rise with the increasing of normal force under the constant displacement, current and relative sliding speed. There is an optimal normal force making the maximum coupled temperature to be the lowest for the friction pair of the metal impregnation carbon and stainless steel. The normal force can be used as the working normal force in order to reduce the abrasion induced by temperature rising

    Quantitative assessment of the associations between XRCC1 polymorphisms and bladder cancer risk

    Get PDF
    BACKGROUND: The XRCC1 polymorphisms have been implicated in bladder cancer risk, but individually published studies show inconsistent results. The aim of our study was to clarify the effects of XRCC1 variants on bladder cancer risk. METHODS: A systematic literature search up to September 13, 2012 was carried out in PubMed, EMBASE and Wanfang databases, and the references of retrieved articles were screened. Crude odds ratios with 95% confidence intervals were used to assess the associations between XRCC1 Arg194Trp and Arg399Gln polymorphisms and bladder cancer risk. Heterogeneity and publication bias were also evaluated. RESULTS: A total of 14 and 18 studies were eligible for meta-analyses of Arg194Trp and Arg399Gln, respectively. Regrouping was adopted in accordance with the most probable appropriate genetic models. No obvious heterogeneity between studies was found. For overall bladder cancer, the pooled odds ratios for Arg194Trp and Arg399Gln were 1.69 (95% confidence interval: 1.25 to 2.28; P = 0.001) and 1.10 (95% confidence interval: 1.03 to 1.19; P = 0.008), respectively. After excluding the studies that were not in Hardy–Weinberg equilibrium, the estimated pooled odds ratio still did not change at all. CONCLUSIONS: The meta-analysis results suggest that XRCC1 Arg194Trp and Arg399Gln polymorphisms may be associated with elevated bladder cancer risk

    Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells

    Get PDF
    AbstractmiRNAs are a class of small-noncoding RNAs capable of negatively regulating gene expression. Here, we found that miR-195 is down-regulated in human bladder cancer tissue versus normal adjacent tissue. To better characterize the role of miR-195 in bladder cancer, we conducted gain of function analysis by transfecting bladder cancer cell line T24 with chemically synthesized miR-195 mimic. We identified CDK4, an early G1 cell cycle regulator, as a novel target of miR-195. Selective over-expression of miR-195 could induce G1-phase arrest in T24 cells, and subsequently inhibit T24 cell growth. These findings indicate that miR-195 could be a potential tumor suppressor in bladder cancer

    p97/VCP is highly expressed in the stem-like cells of breast cancer and controls cancer stemness partly through the unfolded protein response

    Get PDF
    p97/VCP, an evolutionarily concerned ATPase, partakes in multiple cellular proteostatic processes, including the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Elevated expression of p97 is common in many cancers and is often associated with poor survival. Here we report that the levels of p97 positively correlated with the histological grade, tumor size, and lymph node metastasis in breast cancers. We further examined p97 expression in the stem-like cancer cells or cancer stem cells (CSCs), a cell population that purportedly underscores cancer initiation, therapeutic resistance, and recurrence. We found that p97 was consistently at a higher level in the CD4

    Photoluminescence mechanism and applications of Zn-doped carbon dots

    Get PDF
    Heteroatom-doped carbon dots (CDs) with excellent optical characteristics and negligible toxicity have emerged in many applications including bioimaging, biosensing, photocatalysis, and photothermal therapy. The metal-doping of CDs using various heteroatoms results in an enhancement of the photophysics but also imparts them with multifunctionality. However, unlike nonmetal doping, typical metal doping results in low fluorescence quantum yields (QYs), and an unclear photoluminescence mechanism. In this contribution, we detail results concerning zinc doped CDs (Zn-CDs) with QYs of up to 35%. The zinc ion charges serve as a surface passivating agent and prevent the aggregation of graphene p–p stacking, leading to an increase in the QY of the Zn-CDs. Structural and chemical investigations using spectroscopic and first principle simulations further revealed the effects of zinc doping on the CDs. The robust Zn-CDs were used for the ultra-trace detection of Hg2+ with a detection limit of 0.1 mM, and a quench mechanism was proposed. The unique optical properties of the Zn-CDs have promise for use in applications such as in vivo sensing and future phototherapy applications

    Two Low-Complexity Efficient Beamformers for an IRS- and UAV-Aided Directional Modulation Network

    Get PDF
    As excellent tools for aiding communication, an intelligent reflecting surface (IRS) and an unmanned aerial vehicle (UAV) can extend the coverage area, remove the blind area, and achieve a dramatic rate improvement. In this paper, we improve the secrecy rate (SR) performance of directional modulation (DM) networks using an IRS and UAV in combination. To fully explore the benefits of the IRS and UAV, two efficient methods are proposed to enhance the SR performance. The first approach computes the confidential message (CM) beamforming vector by maximizing the SR, and the signal-to-leakage-noise ratio (SLNR) method is used to optimize the IRS phase shift matrix (PSM), which is called Max-SR-SLNR. To reduce the computational complexity, the CM, artificial noise (AN) beamforming, and IRS phase shift design are independently designed in the following method. The CM beamforming vector is constructed based on the maximum ratio transmission (MRT) criteria along the channel from Alice-to-IRS, the AN beamforming vector is designed by null-space projection (NSP) on the remaining two channels, and the PSM of the IRS is directly given by the phase alignment (PA) method. This method is called the MRT-NSP-PA. The simulation results show that the SR performance of the Max-SR-SLNR method outperforms the MRT-NSP-PA method in the cases of small-scale and medium-scale IRSs, and the latter approaches the former in performance as the IRS tends to a larger scale

    Antibacterial activity and mechanism of sanguinarine against Staphylococcus aureus by interfering with the permeability of the cell wall and membrane and inducing bacterial ROS production

    Get PDF
    Staphylococcus aureus (SA) is representative of gram-positive bacteria. Sanguinarine chloride hydrate (SGCH) is the hydrochloride form of sanguinarine (SG), one of the main extracts of Macleaya cordata (M. cordata). There are few reports on its antibacterial mechanism against SA. Therefore, in this study, we investigated the in vitro antibacterial activity and mechanism of SGCH against SA. The inhibitory zone, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) were measured, and the bactericidal activity curve was plotted. In addition, the micromorphology, alkaline phosphatase (AKP) activity, Na+K+, Ca2+Mg2+-adenosine triphosphate (ATP) activity, intracellular reactive oxygen species (ROS), and fluorescein diacetate (FDA) were observed and detected. The results showed that the inhibitory zone of SGCH against SA was judged as medium-sensitive; the MIC and MBC were 128 and 256 ÎĽg/mL, respectively; in the bactericidal activity curve, SGCH with 8 Ă— MIC could completely kill SA within 24 h. SGCH was able to interfere with the integrity and permeability of the SA cell wall and membrane, as confirmed by the scanning electron microscopy (SEM) images, the increase in extracellular AKP and Na+ K+, Ca2+ Mg2+-ATP activities as well as the fluorescein diacetate (FDA) staining experiment results. Moreover, a high concentration of SGCH could induce SA to produce large amounts of ROS. In summary, these findings revealed that SGCH has a preferable antibacterial effect on SA, providing an experimental and theoretical basis for using SG as an antibiotic substitute in animal husbandry and for the clinical control and treatment of diseases caused by SA

    Brain Activities Responding to Acupuncture at ST36 (zusanli) in Healthy Subjects: A Systematic Review and Meta-Analysis of Task-Based fMRI Studies

    Get PDF
    PurposeStomach 36 (ST36, zusanli) is one of the important acupoints in acupuncture. Despite clinical functional magnetic resonance imaging (fMRI) studies of ST36 acupuncture, the brain activities and the neural mechanism following acupuncture at ST36 remain unclear.MethodsLiterature searches were conducted on online databases, including MEDLINE, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang database, WeiPu database, and China Biology Medicine, for task-based fMRI studies of acupuncture at ST36 in healthy subjects. Brain regions activated by ST36 acupuncture were systematically evaluated and subjected to seed-based d mapping meta-analysis. Subgroup analysis was conducted on control procedures, manual acupuncture, electrical acupuncture (EA), and acupuncture-specific activations. Meta-regression analysis was performed to explore the effects of needle retention time on brain activities following ST36 acupuncture stimulation. The activated brain regions were further decoded and mapped on large-scale functional networks to further decipher the clinical relevance of acupuncturing at ST36.ResultsA total of sixteen studies, involving a total of 401 right-handed healthy participants, that satisfied the inclusion criteria were included in the present meta-analysis. Meta-analysis showed that acupuncturing on ST36 positively activates the opercular part of the right inferior frontal gyrus (IFG.R), left superior temporal gyrus (STG.L), and right median cingulate/paracingulate gyri (MCG.R) regions. Needle retention time in an acupuncture session positively correlates with the activation of the left olfactory cortex, as shown in meta-regression analysis. Subgroup analysis revealed that EA stimulation may be a source of heterogeneity in the pooled results. Functional network mappings showed that the activated areas were mapped to the auditory network and salience network. Further functional decoding analysis showed that acupuncture on ST36 was associated with pain, secondary somatosensory, sound and language processing, and mood regulation.ConclusionAcupuncture at ST36 in healthy individuals positively activates the opercular part of IFG.R, STG.L, and MCG.R. The left olfactory cortex may exhibit positive needle retention time-dependent activities. Our findings may have clinical implications for acupuncture in analgesia, language processing, and mood disorders.Systematic Review Registrationhttps://inplasy.com/inplasy-2021-12-0035
    • …
    corecore