8,282 research outputs found

    Evaluating extreme rainfall changes over Taiwan using a standardized index

    Get PDF
    The annual daily maximum precipitation (rx1day) is widely used to represent extreme events and is an important parameter in climate change studies. However, the climate variability in rx1day is sensitive to outliers and has difficulty representing the characteristics of large areas. We propose to use the probability index (PI), based on the cumulative density function (CDF) of a generalized extreme value (GEV) distribution to fit and standardize the rx1day to represent extreme event records in this study. A good correlation between the area-averaged PIs of the observed stations and those of the gridded dataset can be found over Taiwan. From the past PI records, there is no distinct trend in western Taiwan before the end of the 20th century, but a climate regime change happened during 2002 - 2003. The dual change effects from both the variance and linear trend of extreme events are identified over the northeastern and southern parts of Taiwan, along with the island's central and southern regions, showing different abrupt changing trends and intensity. The PI can also be calculated using climate projection data to represent the characteristics of future extreme changes. The climate variability of PIs on the present (ALL) and future (RCP4.5 and RCP8.5) scenarios were evaluated using the 16 Couple Model Intercomparison Projects Phase-5 models (CMIP5). The simulated present fluctuations in PIs are smaller than those of actual observations. In the 21st century, the RCP8.5 scenario shows that the PI significantly increases by 10% during the first half of the century, and 14% by the end of the century.1112Ysciescopu

    Faint young Sun paradox remains

    Full text link
    The Sun was fainter when the Earth was young, but the climate was generally at least as warm as today; this is known as the `faint young Sun paradox'. Rosing et al. [1] claim that the paradox can be resolved by making the early Earth's clouds and surface less reflective. We show that, even with the strongest plausible assumptions, reducing cloud and surface albedos falls short by a factor of two of resolving the paradox. A temperate Archean climate cannot be reconciled with the low level of CO2 suggested by Rosing et al. [1]; a stronger greenhouse effect is needed.Comment: 3 pages, no figures. In press in Nature. v2 corrects typo in author list in original submissio

    The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis

    Full text link
    Leaf transpiration rate (E) frequently shows a peaked response to increasing vapour pressure deficit (D). The mechanisms for the decrease in E at high D, known as the 'apparent feed-forward response', are strongly debated but explanations to date have exclusively focused on hydraulic processes. However, stomata also respond to signals related to photosynthesis. We investigated whether the apparent feed-forward response of E to D in the field can be explained by the response of photosynthesis to temperature (T), which normally co-varies with D in field conditions. As photosynthesis decreases with increasing T past its optimum, it may drive a decrease in stomatal conductance (gs) that is additional to the response of gs to increasing D alone. If this additional decrease is sufficiently steep and coupling between A and gs occurs, it could cause an overall decrease in E with increasing D. We tested this mechanism using a gas exchange model applied to leaf-scale and whole-tree CO2 and H2O fluxes measured on Eucalyptus saligna growing in whole-tree chambers. A peaked response of E to D was observed at both leaf and whole-tree scales. We found that this peaked response was matched by a gas exchange model only when T effects on photosynthesis were incorporated. We conclude that field-based studies of the relationship between E and D need to consider signals related to changing photosynthetic rates in addition to purely hydraulic mechanisms. © 2014 Elsevier B.V

    Effects of a small planktivore (Pseudorasbora parva: Cyprinidae) on eutrophication of a shallow eutrophic lake in central China

    Get PDF
    An enclosure experiment was performed in Lake Yuehu, central China, to assess the effects of a gradient of Pseudorasbora parva biomass on eutrophication state parameters, from May 15 to June 14, 2004. Experimental enclosures were placed into the lake and four treatments were conducted: Control (no fish), low fish (16.5 g m(-3)), medium fish (55 g m(-3)), and high fish (110 g m(-3)). The experimental fish were an average total length of 78 +/- 7 mm (mean +/- standard deviation) and an average weight of 5.5 +/- 1.5 g (mean +/- standard deviation). In general, fish increased Secchi disk transparency (SD) and reduced chlorophyll a and total phytoplankton cells, especially in the medium and high fish treatments. No significant effect of fish on total nitrogen (TN) and total phosphorus (TP) was observed. Relatively higher SD, and lower TN and TP were observed in the medium fish treatment as compared to other fish treatments. Effects of fish biomass on chlorophyll a and total phytoplankton cells were not significantly different between the medium and the high fish treatments. Based on the observed eutrophication parameters and fish mortality, the current experiments suggest that maintaining a 55 g m(-3) biomass of P. parva may be helpful for controlling eutrophic state in the studied lake. Further studies are needed to extrapolate the current results to the whole-lake management decisions

    An instability criterion for nonlinear standing waves on nonzero backgrounds

    Full text link
    A nonlinear Schr\"odinger equation with repulsive (defocusing) nonlinearity is considered. As an example, a system with a spatially varying coefficient of the nonlinear term is studied. The nonlinearity is chosen to be repelling except on a finite interval. Localized standing wave solutions on a non-zero background, e.g., dark solitons trapped by the inhomogeneity, are identified and studied. A novel instability criterion for such states is established through a topological argument. This allows instability to be determined quickly in many cases by considering simple geometric properties of the standing waves as viewed in the composite phase plane. Numerical calculations accompany the analytical results.Comment: 20 pages, 11 figure

    A topological insulator surface under strong Coulomb, magnetic and disorder perturbations

    Full text link
    Three dimensional topological insulators embody a newly discovered state of matter characterized by conducting spin-momentum locked surface states that span the bulk band gap as demonstrated via spin-resolved ARPES measurements . This highly unusual surface environment provides a rich ground for the discovery of novel physical phenomena. Here we present the first controlled study of the topological insulator surfaces under strong Coulomb, magnetic and disorder perturbations. We have used interaction of iron, with a large Coulomb state and significant magnetic moment as a probe to \textit{systematically test the robustness} of the topological surface states of the model topological insulator Bi2_2Se3_3. We observe that strong perturbation leads to the creation of odd multiples of Dirac fermions and that magnetic interactions break time reversal symmetry in the presence of band hybridization. We also present a theoretical model to account for the altered surface of Bi2_2Se3_3. Taken collectively, these results are a critical guide in manipulating topological surfaces for probing fundamental physics or developing device applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with arXiv:1009.621

    Hedgehog Spin-texture and Berry's Phase tuning in a Magnetic Topological Insulator

    Full text link
    Understanding and control of spin degrees of freedom on the surfaces of topological materials are key to future applications as well as for realizing novel physics such as the axion electrodynamics associated with time-reversal (TR) symmetry breaking on the surface. We experimentally demonstrate magnetically induced spin reorientation phenomena simultaneous with a Dirac-metal to gapped-insulator transition on the surfaces of manganese-doped Bi2Se3 thin films. The resulting electronic groundstate exhibits unique hedgehog-like spin textures at low energies, which directly demonstrate the mechanics of TR symmetry breaking on the surface. We further show that an insulating gap induced by quantum tunnelling between surfaces exhibits spin texture modulation at low energies but respects TR invariance. These spin phenomena and the control of their Fermi surface geometrical phase first demonstrated in our experiments pave the way for the future realization of many predicted exotic magnetic phenomena of topological origin.Comment: 38 pages, 18 Figures, Includes new text, additional datasets and interpretation beyond arXiv:1206.2090, for the final published version see Nature Physics (2012

    Hsp90 governs dispersion and drug resistance of fungal biofilms

    Get PDF
    Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections
    corecore