25 research outputs found

    Impact on Disease Development, Genomic Location and Biological Function of Copy Number Alterations in Non-Small Cell Lung Cancer

    Get PDF
    Lung cancer, of which more than 80% is non-small cell, is the leading cause of cancer-related death in the United States. Copy number alterations (CNAs) in lung cancer have been shown to be positionally clustered in certain genomic regions. However, it remains unclear whether genes with copy number changes are functionally clustered. Using a dense single nucleotide polymorphism array, we performed genome-wide copy number analyses of a large collection of non-small cell lung tumors (n = 301). We proposed a formal statistical test for CNAs between different groups (e.g., non-involved lung vs. tumors, early vs. late stage tumors). We also customized the gene set enrichment analysis (GSEA) algorithm to investigate the overrepresentation of genes with CNAs in predefined biological pathways and gene sets (i.e., functional clustering). We found that CNAs events increase substantially from germline, early stage to late stage tumor. In addition to genomic position, CNAs tend to occur away from the gene locations, especially in germline, non-involved tissue and early stage tumors. Such tendency decreases from germline to early stage and then to late stage tumors, suggesting a relaxation of selection during tumor progression. Furthermore, genes with CNAs in non-small cell lung tumors were enriched in certain gene sets and biological pathways that play crucial roles in oncogenesis and cancer progression, demonstrating the functional aspect of CNAs in the context of biological pathways that were overlooked previously. We conclude that CNAs increase with disease progression and CNAs are both positionally and functionally clustered. The potential functional capabilities acquired via CNAs may be sufficient for normal cells to transform into malignant cells

    Multiple Signaling Pathways are Activated During Insulin-like Growth Factor-I (IGF-I) Stimulated Breast Cancer Cell Migration

    Full text link
    In order to display the full metastatic phenotype, the cancer cell must acquire the ability to migrate. In breast cancer, we have previously shown that insulin-like growth factor I (IGF-I) enhances cell motility in the highly metastatic MDA-231BO cell line by activating the type I IGF receptor (IGF1R). This motility response requires activation of IRS-2 and integrin ligation. In order to identify the key molecules downstream of IRS-2, we examined several signaling pathways known to be involved in cell motility. Focal adhesion kinase (FAK) was not activated by IGF-I, but IGF-I caused redistribution of FAK away from focal adhesion plaques. IGF-I treatment of MDA-231BO cells activated RhoA and inhibition of Rho-kinase (ROCK) inhibited the IGF-mediated motility response. The mitogen activated protein kinase (MAPK), p38, was also activated by IGF-I and inhibition of p38 by SB203580 blocked IGF-I induced cell motility. ROCK inhibition with Y-27632 also inhibited p38 phosphorylation suggesting that p38 lies downstream of ROCK. Both Erk1,2 and phosphatidyl-3 kinase (PI3K) were required for IGF-I stimulated cell motility, but only PI3K appeared to be directly downstream of IGF-I. Thus, IGF-I activation of its receptor coordinates multiple signaling pathways required for cell motility. Defining the key molecules downstream of the type I IGF receptor may provide a basis for optimizing therapies directed at this target.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44233/1/10549_2005_Article_4626.pd
    corecore