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Abstract

Background: Gene set analyses have become increasingly important in genomic research, as many complex
diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional
repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set
analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important
feature of a gene set to improve statistical power in gene set analyses.

Results: We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on
multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation
among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a
Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression
coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled
chi-square approximation. We show using simulations that type I error is protected under different choices of working
covariance matrices and power is improved as the working covariance approaches the true covariance. The global
test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a
published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and
gene set enrichment analysis (GSEA).

Conclusion: We develop a gene set analyses method (TEGS) under the multivariate regression framework, which
directly models the interdependence of the expression values in a gene set using a working covariance. TEGS
outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

Background
Genome-wide analysis using microarray data, includ-
ing RNA expression, DNA copy number and epigenetic
DNA methylation, has become a popular tool in genomic
research. Single gene/marker analysis provides a quick
and convenient tool to identify top genes that might be
associated with phenotypic trait. However, it is subject to
a large number of false positives due to a large number
of comparisons, and does not fully take into account that
some genes have similar biological functions and work
together.
Microarray gene expressions or genetic markers usually

have natural groupings based on biological knowledge.
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For example, multiple genes belong to the same biolog-
ical pathway or network; or contiguous copy number-
detecting probes belong to the same gene or cytoband.
Incorporating the prior knowledge or annotation about
the grouping underlying the genome-wide data can make
the resultsmore interpretable. Note that the groupingmay
not necessarily come from biology. It can also be a cluster
of genes identified using clusteringmethods. In this paper,
these natural or statistical groupings are loosely called a
gene set, which refers to a set of genes, or a set of markers
or simply a set of probes.
Numerous approaches for gene set analyses have been

proposed [1], including the overrepresentation analysis
[2], the univariate tests [3], the multivariate tests [4,5], the
global test [6], and gene set enrichment analysis (GSEA)
[7,8] and its variant [9]. The overrepresentation-type anal-
ysis has been found to suffer from methodological prob-
lems, which may lead to confusing results [10]. The global
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test and GSEA improve over the overrepresentation-type
analysis. The global test regresses the phenotype on gene
expressions in a gene set and tests for regression coeffi-
cients. GSEA performs a modified Kolmogorov-Smirnov
test by comparing a gene set with the rest of the genes
in the genome. However, the test statistics used in both
methods ignore the correlation among the genes in a
gene set and hence are subject to loss of statistical power,
as genes in a gene set are often correlated and function
together. The univariate test does not account for the
correlation and loses power when the interdependence
within the gene set is high, compared with themultivariate
tests [11].
We propose in this paper to test for the effect of a

gene set using a variance component test in multivari-
ate regression model, where the correlation among genes
in a gene set is explicitly taken into account. We term
this test TEGS (Test for the Effect of a Gene Set). Specif-
ically, we regress the gene expressions in a gene set on
an independent variable, such an exposure or biological
state variable, e.g., smoking (yes/no) or lung cancer status
(yes/no), using multivariate regression, where the correla-
tion among genes in a gene set is modeled using a working
covariance matrix. As the number of genes might be large
in a gene set, we develop a variance component score
test for testing the effects of the exposure/biological state
on the overall gene set profile by assuming regression
coefficients follow a common distribution.
We show that TEGS includes the global test of Goeman,

et al (2004) as a special case when correlation among the
genes in a gene set is ignored. We conduct simulation
studies to evaluate the finite sample performance of TEGS
and compare it with the global test and GSEA. We apply
the proposed method to analysis of the Type II Diabetes
data set [7].

Methods
Themodel
Suppose that there are n subjects and subject i has p con-
tinuous outcomes Yi1,Yi2, . . . ,Yip. In gene set analysis, the
p outcomes indicate the expression values of p genes in
a gene set, and xi is an independent variable, e.g., expo-
sure/biological state variable, such as mutation status: 1 if
mutant and 0 if wild-type; or disease status (yes/no) for
subject i. We consider the multivariate linear model

Yij = αj +xiβj+εij, i = 1, 2, ..., n and j = 1, 2, ..., p (1)

where the errors, εi = (εi1, εi2, ..., εip)T are assumed to be
independent across different subjects and follow a multi-
variate normal distribution with mean 0 and true covari-
ance �, which is often unknown, and αj is the average
expression value of gene j for those with x = 0. Covariates
can be incorporated in the model (1) by expanding αj to

be
∑K

k=1 αjkzik where K is the number of covariates plus
one (i.e., the intercept), zik is the covariate k of subject i,
zi1 is 1, and αjk is the regression coefficient of the covariate
k for the gene j. However, because the data we are deal-
ing with has small n and large p, we would need the ridge
regression to estimate αjk . If xi is binary, e.g., disease sta-
tus, βj is the mean difference of the expression levels of
gene j between the two disease groups. Model (1) can be
written in matrix notation by stacking data of n subjects
and p gene expressions as

Y = Jα + Xβ + ε, (2)

where Y =(YT
1 , · · · ,YT

n )T is an np × 1 vector, Y i = (Yi1,
Yi2, . . . ,Yip

)T, ε=(εT1 ,· · ·, εTn )T, J = (Ip,· · ·, Ip)T ,X =
(x1Ip,· · ·, xnIp)T,α=(

α1, α2,· · ·, αp
)T , β =(

β1, β2,· · ·, βp
)T .

Gene set analysis using TEGS: A variance component score
test
The null hypothesis H0 : β = 0 indicates that xi has
no effect on the mean of gene expression profile Y i in
a gene set. A traditional multivariate test for H0 [4] is
based on a p-degree of freedom test and hence has limited
power when the size of the gene set p is large, especially
in the presence of a large number of null genes. To over-
come this problem and improve test power, we assume
the regression coefficients βj follows an arbitrary common
distribution with mean 0 and variance τ . The model (2)
becomes a linear mixed model [12]. The null hypothesis
H0 : β = 0 is equivalent to the null hypothesis for the
variance component H0 : τ = 0. To test for H0 : τ = 0,
one can perform a variance component score test [13].
Specifically, following Lin (1997), simple calculations

show that the score for the variance component τ under
the induced linear mixed model is

(Y− Jα)T�−1
n XXT�−1

n (Y− Jα) − tr
(
�−1

n XXT
)
, (3)

where �n = diag(�, · · · ,�) is an np × np block diagonal
matrix. As the second term does not depend on data, we
use the first term to construct the test statistic

QT = (Y − J α̂)T�−1
n XXT�−1

n (Y − J α̂), (4)

where α̂ is the maximum likelihood estimator of α

under H0. One can easily show that under H0, α̂ =
(JT�−1

n J)−1JT�−1
n Y = Ȳ , where Ȳ = n−1 ∑n

i=1 Y i
is simply the sample mean. Hence Equation (4) can be
written as

QT = YT (I − H)�−1
n XXT�−1

n (I − H)Y ,
where H = n−1JJT . As QT is quadratic in Y . Some cal-
culations show that QT follows a mixture of chi-square
distribution

∑
j λjχ

2
1,j, where the weights λj are the eigen-

values of the matrix XT (I − H)�−1
n (I − H)X.
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The test statistic QT depends on the true covariance
matrix � of Y i, which is often unknown in practice and
requires estimation of a large number of parameters.
Although sample covariance can be used to estimate �,
it is not stable when the size of the gene set p is large or
moderate and sample size is small. We hence propose the
use of a working covariance V for εi in (1) [14], which
has a simpler structure and depends on a small num-
ber of parameters. We derive a variance component test
for H0 : τ = 0 assuming εi has a covariance V , which
might misspecify the true covariance �. Under this work-
ing model, similar calculations show that the variance
component score statistic for H0 : τ = 0 is

Q = YT (I − H)V−1
n XXTV−1

n (I − H)Y , (5)

where Vn = diag(V , · · · ,V). We term the variance
component test using Q TEGS (Test for the Effect of a
Gene Set).
Examples of working covariance V include working

independence (Indpt), which assumes the genes are inde-
pendent in a gene set; factor analysis covariances assum-
ing two factors (F-2); adaptive factor analysis covariance
with the estimated number of factors explaining up to 80%
variability (F-adpt), compound symmetry (CpSym), which
assumes the same pair-wise correlation among genes; and
unstructured sample covariance (Unstr).
The unstructured sample covariance is estimated using

the residuals ε̂ij obtained by performing separate sim-
ple linear regression of individual gene expressions Y ij
on xi in (1). When xi is binary, e.g., disease=yes/no, ε̂ij
is simply the jth centered outcome using the group spe-
cific means. When the number of genes in a gene set is
large and the sample size is small, the standard empiri-
cal unstructured sample covariance estimator is unstable.
We hence stabilize it using a ridge estimator by adding
the 5th percentiles of sample variances to the diagonal
of the empirical covariance estimator. Estimation for the
compound symmetry covariance and the factor analysis
covariance was based on the ridge unstructured covari-
ance estimator. Specifically, for the compound symmetry
covariance estimator, the pair-wise covariance is esti-
mated as the sample mean of the off-diagonal elements
of the ridge unstructured covariance estimator. The two-
factor and adaptive-factor covariances are estimated by
singular value decomposition of the ridge unstructured
covariance estimator.
We discuss in Section Null distribution of TEGS estima-

tion of the p-value using the TEGS test statisticQ. We per-
fromed simulation studies to investigate the performance
of size and power using different working covariances in
a wide range of scenarios and compare TEGS with that
using QT , which is based on the true covariance matrix of

Y i and is the optimal test statistic within the TEGS statis-
tic family, but cannot be calculated in practice as the true
covariance of Y i is unknown.

Special case of two group comparison and relationship of
TEGS with the global test
Consider the setting of testing for the effect of a binary
exposure/disease status on expressions in a gene set, i.e.,
xi is binary (0/1), some calculations show that the TEGS
statistic Q in (5) can be simplified as

Q ={Ȳ (1) − Ȳ (2)}TV−1
n V−1

n {Ȳ (1) − Ȳ (2)}

=
{n1n2

n

}2 p∑
j=1

{ p∑
k=1

vjk[ Ȳk(1) − Ȳk(2)]

}2

,
(6)

where Ȳ (1) and Ȳ (2) are the sample mean of the out-
come vector for group 1 and 2, and Ȳk(1) and Ȳk(2) (k =
1, · · · , p) are their components, vjk is the (j, k)th element
of V−1. This suggests that the TEGS statistic Q compares
the weighted average of the outcome-specific mean dif-
ferences of the gene expression profiles between the two
groups.
If one assumes working independence V = I, the TEGS

test statistic Q in (6) becomes

Qind = {Ȳ (1) − Ȳ (2)}T {Ȳ (1) − Ȳ (2)}

=
{n1n2

n

}2 p∑
k=1

{Ȳk(1) − Ȳk(2)}2.
(7)

It can be easily shown that the TEGS statistic that
uses the working independence covariance among gene
expressions in a gene set (Qind) is the same as the global
test of Goeman, et al (2004). Although the global test is
equivalent to the TEGS with working independence, it is
still derived under themodel (1) where the true covariance
� is not necessarily independent.
Specifically, the global test is derived as the variance

component test under the logistic regressionmodel of the
binary disease status xi on the p gene expressions

logit(πi) = γ0 + γ1Yi1 + · · · + γpYip. (8)

where πi = Pr(xi = 1|Yi1, · · · ,Yip) is the probability of
disease given the gene expression profiles in a gene set.
Under the logistic model (8), to test for the null hypothe-
sis of no gene set effect on disease status H0 : γ1 = · · · =
γp = 0, Goeman, et al (2004) assumed the coefficients
γj are independent and follow an arbitrary distribution
with mean 0 and variance τ . The logistic model (8) hence
becomes a logistic mixed model [15]. It follows that the
null hypothesis H0 : γ1 = · · · = γp = 0 is identical to
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H0 : τ = 0. Goeman, et al (2004) derived the variance
component score test for H0 : τ = 0 and termed it as the
global test. One can easily show that the global test is iden-
tical toQind in (7), apart from a term that does not depend
on Y .
A comparison of (6) and (7) shows that TEGS has the

flexibility to account for different correlations among gene
expressions in a gene set by comparing the weighted
differences of the means of gene expressions between
two groups, while the global test, which is the same as
the TEGS assuming working independence among gene
expressions, ignores correlation among gene expressions.
One hence would expect that TEGS that accounts for
within gene set correlation is likely to be more powerful
than the global test.
Another testing procedure that is closely related to

TEGS is the Sequence Kernel Association Test (SKAT),
a method developed to analyze SNP (single nucleotide
polymorphism) or sequence data in genome-wide associ-
ation studies [16]. It has been shown that the global test is
equivalent to the SKAT with linear kernel [16,17]. Thus,
the TEGS with working independence is equivalent to
the SKAT with linear kernel. However, TEGS with other
working correlations and SKAT with other kernels do not
have an obvious correspondence.

Null distribution of TEGS
As the TEGS statistic Q in (5) is a quadratic function
of Y , we have shown that it follows a mixture of chi-
square distributions, where the weights depend on the
true covariance � and the working covariance V . We
propose two methods to estimate the p-value of TEGS.

Permutation
One approach to calculate the p-value for the TEGS statis-
ticQ, is based on permutation, where we permute the xi’s,
and calculate Q for each permuted dataset and compare
the observed value of Q with those calculated based on
the permuted samples. Note that for each permutation, V
need to be re-estimated given an assumed structure, e.g.,
under independence, unstructured, exchangeable, as v is
the covariance conditional on the x. If the sample size is
large (i.e. >100), one may use the Monte Carlo approach
proposed by Lin [18].

Scaledχ2 approximation
The second approach is to compute the p-value for the
TEGS statisticQ is to use the Satterthwaitemethod [19] to
approximate the null distribution of Q, which is a mixture
of χ2 distributions. The Satterthwaite method approxi-
mates the null distribution ofQ by a scaled χ2 distribution
κχ2

ν , where κ is the scale parameter and ν is the degree of
freedom. The values of κ and ν can be estimated bymatch-

ing the first two moments ofQ underH0 with those of the
the scaled χ2 distribution as

κ = Var(Q)

2E(Q)
, ν = 2[ E(Q)]2

Var(Q)
.

We estimate the mean and variance of Q under the null
using permutation and denote the p-value estimated using
this approach as pκχ2

ν
. Using the Satterthwaite approxima-

tion, we are able to calculate small p-values based on a
smaller number of permutations than the first method.

Normalmixture approximation
In order to achieve better precision of smaller p-values,
we further propose a method using the normal mixture
approximation [20]. Specifically, we fit a two-population
normal mixture π1N(μ1, σ 2

1 ) + π2N(μ2, σ 2
2 ) for the

�−1(p(b)
κχ2

ν
) where p(b)

κχ2
ν
is the scaled χ2 approximated p-

value for the statistic Q(b) obtained at permutation b,
b = 1, ...,B (B is the number of permutation), � is the
cumulative distribution function of the standard normal,
and πa, μa and σ 2

a are proportion, mean and variance of
the normal distribution a (a = 1, 2), respectively. p-value
can then be estimated as the tail probability by comparing
�−1(pκχ2

ν
) and π̂1N(μ̂1, σ̂ 2

1 ) + π̂2N(μ̂2, σ̂ 2
2 ) where μ̂a σ̂ 2

a
and π̂a, respectively are maximum likelihood estimates of
μa, σ 2

a and πa.

Power calculations
To design a new study using a gene set analysis, one
needs to perform power calculations. We discuss in this
section power calculations using TEGS. The distribution
of Q under the alternative hypothesis follows a mixture
of non-central chi-square distributions. We approximate
this distribution using a scaled non-central chi-square
distribution κχ2

ν (δ). Specifically, we first estimate κ and
ν under H0 as κ = VarH0(Q)/[2EH0(Q)] and ν =
2[EH0(Q)]2 /VarH0(Q), where EH0(Q) and VarH0(Q) are
the mean and the variance estimated theoretically as
under the null as

EH0(Q) = tr
(
(I − H)V−1XXTV−1(I − H)�

)
VarH0(Q) = 2tr

(
(I − H)V−1XXTV−1(I − H)�

(I − H)V−1XXTV−1(I − H)�
)
.

For power calculations, to estimate the non-centrality
parameter δ, the theoretical mean EHA(Q) under the alter-
native is

EHA(Q) = tr
(
(I − H)V−1XXTV−1(I − H)�

)
+ βTXT (I − H)V−1XXTV−1(I − H)Xβ .

Setting EHA(Q) = (ν + δ)κ , which is the mean of
κχ2

ν (δ), one can solve for δ, and calculate the power of
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the test using Pr(χ2
ν (δ) > χ2

ν,α) where α is the size of the
test. The true covariance � and the working covariance
V can be estimated using the pilot data. One can perform
calculations by varying and the effects β .

Simulation study
Single gene set
We simulated the data using model (1). Two different
combinations of n and p were considered: n=50 and p=10
and n=20 and p=40. Four different true covariances of
εi, �, were investigated: (1) compound symmetry (CS),
where we assumed the diagonal elements equal to 1
and the off-diagonal elements equal to 0.1 or 0.5; (2)
first-order autoregressive (AR1), where we assumed the
diagonal elements equal to 1 and off-diagonal elements
decay by a factor of 0.5 or 0.8; (3) two factor covari-
ance (F2): � = P1PT

1 + P2PT
2 + diag{u}, where the p

elements of the two factors, P1 and P2 were generated
independently from two Gaussian distributions, and u
was chosen to make the diagonal elements of the �

equal to 1’s; (4) the unstructured covariance (UNS),
which was assumed to be the sample covariance of
MAP00240_Pyrimidine_metabolism (p=40) using the
Type II Diabetes data in Mootha et al. (2003). The sample
covariance of MAP00240_Pyrimidine_metabolism was
calculated based on 17 subjects with normal glucose
tolerance and 17 Type II Diabetes patients by conditioning
on the disease status. To avoid singularity of the sample
covariance, the 5th percentile of the diagonal elements
was added to the diagonal to construct the true covariance
matrix used in simulations.
The regression coefficients β was set by varying the pro-

portion of non-zero β ’s and their magnitudes. For n=50
and p=10, 0%, 40% and 80% of β ’s were set to non-zero.
The non-zero βs were set to be β=±0.25 or ±0.5. For
n = 20 and p=40, 0%, 25%, 50% and 60% of β ’s were
set to be non-zero. The non-zero βs were set to be ±0.5
or ±1.0. The numbers of (−0.5, 0.5) (or (−1.0, 1.0)) are
(2, 8), (5, 5), (5, 15), (10, 10), (5, 25), (10, 20) and (15, 15).
The effect size is summarized by an index,

∑p
j=1 βj/σ̄ 2

where σ̄ 2 is the average variance of the p gene expression
in the same gene set, in the power plots given in Figures 1,
2, 3 and 4.
For each simulation and each true covariance config-

uration, we compared the performance of TEGS assum-
ing six different covariance matrices: true covariance,
unstructured covariance, independence, two factor anal-
ysis covariance, adaptive factor analysis covariance, and
compound symmetry. Note that the TEGS assuming
working independence corresponds to the global test
(Goeman et al. 2004). The p-values were calculated as the
tail probability of Q under the null distribution. The null
distribution was approximated by the methods described

in Section Null distribution of TEGS. A total of 1000 per-
mutations were performed to nonparametrically approx-
imate the null distribution of Q. A total of 5000 and
1000 simulations, respectively were run for the setting
under the null hypothesis (i.e., β=0) and the alternative
hypothesis to calculate sizes and powers. Type I error was
calculated at the α=0.05 level. Statistical power was calcu-
lated as the percentage of p-values less than 0.05 among
1000 simulations.

Multiple gene sets
Gene set enrichment analysis (GSEA) is a widely used
approach to study the enrichment of a gene set in a
large number of genes, which often consists of multiple
gene sets. The null hypothesis hence corresponds to the
competitive null hypothesis [10]. To compare the perfor-
mance of our proposed method TEGS with GSEA, we set
up a simulation study involving multiple gene sets. The
configuration is as follows:

• Setting 1 : We set n=20 and the number of gene sets
be 20. Ten gene sets have p=10 genes (gene sets #1-
10). Among them, six gene sets are under the null and
four gene sets are under the alternative. The other
ten gene sets have p=40 genes per gene set (gene sets
#11-20). Among them, six gene sets are under the
null and four gene sets are under the alternative.
Among the gene sets under the alternatives, we
allowed some genes to have no effects (i.e., those with
βj = 0), and varied the number of signal genes (i.e.,
those with βj �= 0). The number and magnitude of
non-zero β ’s or each of the gene sets under the
alternative hypothesis are given in the top of Table 1.
This setting has a total of 500 genes, with the total
number of signal genes equal to 104 spreading across
8 gene sets and the total number of null genes equal
to 396. We assumed in this setting the 20 gene sets
were uncorrelated. Within each gene set, we assumed
the genes were correlated with the two factor
covariance matrix: v∗ = P1PT

1 + P2PT
2 + diag{u}.

• Setting 2 : This setting is identical to Setting 1 except
that we allowed correlation among the gene sets: gene
sets #1-3, #4-6, #7-9, #11-13, #14-16 and #17-19 are
correlated. The correlation structures are estimated
by two factor covariance from the sample covariances
of the gene sets with p = 30 and 120 in the diabetes
dataset. We marked correlated gene sets in
Table 1.

• Setting 3 : This setting is identical to Setting 2 except
that we added additional 4500 null genes to the 500
genes in the 20 gene sets. This setting mimics more
practical gene expression studies. This gives a total of
5000 genes, with 104 signal genes spreading across 8
gene sets and 4896 null genes. Among the 20 gene
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Figure 1 Power comparison using simulations with the true covariance to be compound symmetry.We set n=20 and p=40; covariance
(cov)=0.1 (top panel) and 0.5 (bottom panel). For each panel, the left plot is based on permutation and the right plot is based on the Satterthwaite
scaled chi-square approximation. For each plot, the powers of TEGS assuming six different covariances were compared. TEGS assuming working
independence (Indpt) corresponds to the global test of Goeman et al. (2004). The horizontal dotdash line indicates the size of the test (i.e., 5%).

sets, same as before, there are 8 gene sets under the
alternative and 12 null gene sets.

For each setting, we applied TEGS and GSEA to each of
the 20 gene sets to compare size and power.

Application: reanalysis of Type II Diabetes data
We applied the proposed method to analyze the Type II
Diabetes gene expression data, whichwere previously ana-
lyzed by Mootha et al. (2003) using GSEA to study for
the pathway effects. The original data have three patient
groups: normal glucose tolerance, impaired glucose toler-
ance, and Type II Diabetes. To illustrate our method and
compare it with GSEA, we restricted our analysis to two
groups: 17 patients with normal glucose tolerance and 17
patients with Type II Diabetes. A total of 124 out of 149
gene sets were analyzed here. We excluded 25 small gene
sets, which have less than four probes.
We performed TEGS assuming five different work-

ing covariances, including independence, unstructured

covariance, factor analysis covariance using two fac-
tors and the number of factors that explain up to 80%
variability, and compound symmetry covariance. We cal-
culated the p-values using permutation and the Satterth-
waite method described in Section Null distribution of
TEGS. The number of permutations for each gene set was
2000. The working independence TEGS corresponds to
the global test [4].We compared the performance of TEGS
with GSEA. The q value, an index measuring the false dis-
covery rate (FDR) [21,22], was used to adjust for multiple
comparisons.

Results
Simulation study
Single gene set
Four true covariances were considered in the simulations:
compound symmetry, AR1, two factor, and unstructured
covariance. The results are presented in Figures 1, 2, 3
and 4. For each true covariance, we compared the powers
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Figure 2 Power comparison using simulations with the true covariance to be AR1. R is the value of the lag 1 autocorrelation. We set n=20 and
p=40; covariance (cov)=0.1 (top panel) and 0.5 (bottom panel). Other notations and symbols are similar to Figure 1.

of TEGS assuming the true covariance and five different
working covariances.
Type I error rate is well protected at the size of 5%

in all the settings with different approximation methods.
For lower levels of the size (0.5% and 0.05%), different

approximationmethods perform well when using the true
covariance (see Additional file 1: Table S1). For different
working correlations, the permutation method protects
the type I error at 0.5% and 0.05% where the type I error
rate using the Satterthwaite approximation is inflated at
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Figure 3 Power comparison using simulations with the true covariance to be two factor covariance.We set n=20 and p=40. Other notations
and symbols are similar to Figure 1.
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Figure 4 Power comparison using simulations with the true covariance to be the stabilized sample covariance of
MAP00240_Pyrimidine_metabolism.We set n=20 and p=40. Other notations and symbols are similar to Figure 1.

0.5% and 0.05% and that using the normal mixture approx-
imation is well-protected at 0.5% but inflated at 0.05%.
In all settings, TEGS assuming the true covariance

(the black solid line) has the best power, while
TEGS assuming independence among the genes
(the black dash line), has the lowest power. TEGS calcu-
lated by accounting for within-gene set correlation using
an estimatedworking covariance is less powerful than that
assuming the true covariance, but more powerful than
TEGS assuming independence among the genes. As TEGS
assuming independence among the genes is the same as
the global test the results indicate that TEGS accounting
for correlation among genes in a gene set is more powerful
than the global test. A comparison of the top panel and the
bottom panel in Figures 1 and 2 shows that the power gain
of TEGS accounting for correlation among genes over the
global test is more pronounced when the correlation is
stronger.
When the working covariance structure is correctly

specified, TEGS using the estimated covariance has the
power closest to that using the true covariance. For exam-
ple, when the true covariance is compound symmetry,
TEGS assuming the compound symmetry structure with
the constant pair-wise covariance estimated from the data
has the power curve closest to that assuming the true
compound symmetry covariance with pair-wise covari-
ance equal to 0.1 or 0.5.
When the true covariance is the sample covariance of

MAP00240_Pyrimidine_metabolism estimated from the
diabetes data (Figure 4), TEGS obtained by estimating
the covariance matrix using any of the working covari-
ance matrices gives similar results, all outperforming
TEGS assuming working independence among the genes
(i.e., the global test). In all settings, TEGS assuming two
factor analysis (F-2) and adaptive factor analysis (F-adpt)

have most robust performance, and give powers that are
closest to TEGS assuming the true covariance structure.
The simulation results for the setting with n=50 and p=10
show similar patterns to those with n=20 and p=40, and
are provided in the Additional file 1.

Multiple gene sets
Table 1 compares the performance of TEGS and GSEA in
settings 2 and 3. The results in Table 1 show that the num-
ber of signal genes not in the gene set affects the type I
error rate and power of GSEA, but does not affect TEGS.
For example, when the total number of genes is 500, the
size of GSEA for testing a null gene set is somewhat con-
servative, and less than the nominal size 0.05. As the total
number of genes increased to 5000 with much more null
genes, the size of GSEA for testing a null gene set became
closer to 0.05.
A comparison of the powers of the 8 gene sets under the

alternative show that TEGS has better power than GSEA.
When the number of genes increases from 500 to 5000
with the number of signal genes remaining the same, i.e.,
increasing the number of null genes, the power of GSEA
for testing the effect of a gene set does not improve much.
The reason can be explained as below. GSEA tests for
competitive null hypothesis. For a given gene set, say gene
set 1, when the 4500 null genes are added to the set of
500 genes, the proportion of signal genes in gene set 1
remains the same (4/10=40%), while the proportion of sig-
nal genes not in the gene set decreases from 100/490=20%
to 100/4990=2%. Although the difference of the propor-
tions of signal genes in gene set 1 and not in gene set
1 becomes bigger, as the size of gene set 1 remains the
same as 10, the p-value using the Kolmogorov-Smirnov
test does not change much. Note that as TEGS tests for
a self-contained null hypothesis [10], its power remains
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Table 1 The simulation results comparing size and power of TEGS and GSEA

Alternative,p=10 Null, p=10 Alternative,p=40 Null, p =40

Correlated Correlated Correlated Correlated Correlated Correlated

No. of β=-1.0 0 0 1 2 0 0 0 0 0 0 0 0 2 5 0 0 0 0 0 0

No. of β=1.0 0 0 3 6 0 0 0 0 0 0 0 0 8 25 0 0 0 0 0 0

No. of β=-0.5 1 2 0 0 0 0 0 0 0 0 2 5 0 0 0 0 0 0 0 0

No. of β=0.5 3 6 0 0 0 0 0 0 0 0 8 25 0 0 0 0 0 0 0 0

No. of β=0 6 2 6 2 10 10 10 10 10 10 30 10 30 10 40 40 40 40 40 40

TEGS(True)
Permutation 21.2 32.8 70.3 87.7 4.8 5.3 5.5 5.3 5.3 5.3 27.6 65.8 96.4 98.4 5.4 4.1 4.9 5.6 4.5 5.7

κχ2
ν 22.0 33.9 70.9 88.0 4.8 5.7 5.5 5.9 5.3 5.6 27.7 67.8 96.6 99.4 5.9 4.2 4.9 5.9 4.8 5.6

TEGS(Indpt)
Permutation 11.0 20.0 41.5 75.0 6.0 6.4 5.1 6.4 5.8 5.5 9.3 23.5 34.8 91.7 3.9 6.6 4.9 3.4 6.1 5.6

κχ2
ν 10.4 19.1 41.1 75.9 5.3 6.2 4.9 5.5 6.2 4.8 10.3 24.5 35.7 93.0 5.1 6.9 5.4 4.0 6.3 5.8

TEGS(Unstr)
Permutation 15.2 21.9 46.4 73.4 4.8 6.5 5.0 4.7 6.2 5.0 16.8 41.8 68.3 98.9 4.6 5.9 3.7 4.9 5.7 6.2

κχ2
ν 13.0 20.8 45.1 73.0 4.3 6.1 4.6 4.4 5.7 4.9 17.5 42.4 70.5 98.9 5.5 6.1 5.0 5.2 6.4 6.4

TEGS(F-2)
Permutation 15.3 25.4 51.2 79.0 5.7 6.0 5.6 5.2 5.1 5.1 17.9 49.3 79.1 99.7 4.3 5.2 5.1 4.6 4.7 5.6

κχ2
ν 15.4 24.5 50.5 78.4 5.6 5.6 5.3 4.8 5.0 5.2 19.9 50.7 80.8 99.8 4.7 5.2 5.0 4.9 6.0 6.2

TEGS(F-adpt)
Permutation 14.5 24.1 48.3 75.9 4.6 7.0 5.1 5.3 6.4 5.3 18.2 45.8 73.7 99.5 4.9 5.9 4.3 5.2 5.5 6.3

κχ2
ν 13.7 22.8 48.0 75.1 5.0 6.5 4.5 5.1 5.9 5.0 18.9 46.1 74.7 99.6 4.9 5.5 5.4 5.6 5.2 6.5

TEGS(CpSym)
Permutation 14.5 24.6 53.1 84.1 5.2 5.6 5.6 5.3 5.8 5.9 16.5 34.5 71.1 99.1 4.2 4.5 4.4 3.1 5.0 5.1

κχ2
ν 15.2 24.2 52.3 83.1 4.9 5.3 5.0 5.4 5.0 5.1 16.3 36.7 72.1 99.2 4.3 4.6 4.8 3.9 5.3 5.1

GSEA, no. of genes=500 2.9 5.6 6.2 17.2 3.9 3.2 3.1 4.2 3.1 3.4 3.2 15.3 6.1 81.4 4.2 4.0 4.3 3.7 3.9 3.4

GSEA, no. of genes=5,000 6.4 7.7 8.1 18.5 5.3 5.4 5.6 4.8 4.7 5.4 5.1 13.1 6.1 39.4 4.4 4.8 4.2 4.6 4.9 4.4

The entries are the percentage of times the p-values are less than 0.05. The columns with non-zero β ’s represent the setting under the alternative and those with zero β ’s represent the settings under the null. Abbreviations
of the working covariance are the same as those in Figure 1. Two settings are considered: the first has 500 genes with 20 gene sets (8 gene sets under the alternative and 12 null gene sets of sizes 10 and 40); the second
setting has 5000 genes with 20 gene sets (8 gene sets under the alternative and 12 null gene sets of sizes 10 and 40) and 4500 additional null genes. The power of TEGS for a given gene set is the same for the two settings.
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the same as the total number of genes increases from 500
to 5000.
The power of TEGS increases quickly with the average

effect size of a gene set,
∑p

j=1 βj/σ 2, while the power using
GSEA improves slightly. This is because GSEA assesses
whether the genes in a gene set are enriched towards the
top in a list of all the genes, where individual genes are
ranked by their p-values. Hence the difference between
the proportion of signal genes in a given gene set and the
proportion of signal genes not in the gene set affect the
p-values calculated using GSEA, while the magnitudes of
the signal genes have limited impact.
A comparison of the results of gene sets of size 10 with

those of size 40 in Table 1 shows that the size of a gene
set, p, affects TEGS and GSEA differently. A smaller gene
set, e.g., p =10, is less likely to be identified as significant
using GSEA. However, the effect of the size of a gene set
on TEGS is smaller. We report in Additional file 1: Table
S2. The results when gene sets are independent.
To run one simulation data generated in the setting

2 (500 genes) on a desktop with 2.53 GHz CPU, the
computation time of TEGS and GSEA (both with 200 per-
mutations) is about 5.6 and 4 seconds, respectively. For
the setting 3 (5000 genes), the computation time of TEGS
and GSEA is about 60 and 14 seconds, respectively. The
most computation burden in TEGS is to invert the work-
ing covariance in each permutation (V−1

n in (5)). Thus,
the analysis with larger gene sets can cost much more
computation.

Application: re-analysis of Type II Diabetes data
TEGS assuming independence among the genes identi-
fied 5 and 8 gene sets with p values less than 0.05 using
permutation and Satterthwaitemethods, respectively. The
corresponding numbers of gene sets were 13 and 14;
15 and 14; and 9 and 10 using TEGS by estimating the
covariance assuming the two factor analysis covariance,
the adaptive factor analysis covariance, and the unstruc-
tured sample covariance. GSEA identified 4 differentially
expressed gene sets. The over-lapping numbers of dif-
ferentially expressed gene sets between TEGS using the
four working covariances and GSEA are shown in Table 2.
TEGS assuming adaptive factor analysis covariance iden-
tified 10 gene sets with FDR less than 0.1 and 20 gene sets
with FDR less than 0.15.
The gene set MAP00252_Alanine_and_aspartate_

metabolism was identified as differentially expressed
between Type II Diabetes patients and those with normal
glucose tolerance: p-value=0.006 using TEGS assuming
adaptive-factor covariance, p=0.003 using TEGS with
exchangeable covariance, p-value=0.005 with TEGS with
independence covariance and 0.054 using TEGS with
unstructured covariance; p=0.028 using GSEA. Figure 5a

Table 2 Results of re-analyses of 124 gene sets in Type II
Diabetes data

Indpt Unstr F-2 F-adpt CpSym GSEA

Permutation

Indpt 5 1 2 2 5 1

Unstr 9 5 7 1 0

F-2 13 9 2 1

F-adpt 15 2 1

CpSym 9 1

GSEA 4

Scaled χ2 approximation

Indpt 8 1 2 2 7 2

Unstr 10 5 8 1 0

F-2 14 8 2 1

F-adpt 14 2 1

CpSym 7 1

GSEA 4

Each cell indicates the over-lapping number of differentially expressed gene sets
at the nominal p-value=0.05 level using TEGS with different working covariance
and GSEA shown in the corresponding column and row.

shows that five genes in this gene set were differen-
tially expressed based on single-gene analysis with the
t-test. The heatmap in Figure 5a also show that dia-
betes patients have higher expression in the upper two
third of the genes but lower expression in the lower
one third. Another interesting gene set we identified is
MAP00531_Glycosaminoglycan_degradation (Figure 5b),
which was found statistically significant using TEGS
with different working correlations: p-values are 0.00034
(adaptive-factor covariance), 0.0032 (unstructured), 0.021
(independence) and 0.022 (exchangeable), but was not
significant using GSEA: p-value=0.39.

Discussion
The power of TEGS is improved by accounting for the cor-
relation among genes within the gene set, especially when
the working covariance gets closer to the true covariance,
and outperforms the TEGS assuming working indepen-
dence. We have also shown that the TEGS with working
independence among genes in a gene set corresponds to
the global test proposed by Goeman, et al (2004). Our
numerical studies show that the TEGS assuming two fac-
tors or adaptive factor covariance matrix overall works
well in practice for difference true covariance structures,
especially when the number of genes p is larger than
sample size n.
We have compared the performance of TEGS with

GSEA. Both tests borrow information across multiple
genes in a gene set and are hence beneficial when a gene
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Figure 5 Gene expression values in two gene sets, (a) MAP00252_Alanine_and_aspartate_metabolism and (b)
MAP00531_Glycosaminoglycan_degradation. The main plot is the expression values of genes standardized by the means and standard
deviations. Each column represents a patient labeled by either “N” (normal glucose tolerance) or “D” (Type II Diabetes). The right panel represents
the p values from t-test of single gene analysis where the dashed line indicates p=0.05 and the dotted line indicates p=0.2.

set has multiple signal genes with modest effects. TEGS
and GSEA differ in several aspects. The TEGS statis-
tic is constructed by accounting for correlation among
genes in a gene set, while GSEA uses individual gene p-
values to calculate the Kolmogorov-Smirnov test, which
ignores the within gene set correlation. TEGS considers
the self-contained null hypothesis, while GSEA consid-
ers the competitive null hypothesis [10]. GSEA studies the
enrichment of genes in a gene set by testing the relative

rankings of the genes in a gene set among all the genes
under investigation. GSEA hence is influenced by the size
of a gene set, the proportion of signal genes in the gene
set, and the proportion of signal genes not in the gene set.
When the proportion of signal genes in a gene set is much
larger relative to that not in the gene set, GSEA performs
well. We note that GSEA has difficulties in capturing a dif-
ferentially expressed gene set when the number of genes
containing true effects is small in a gene set even if the
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effects of these signal genes are strong. When the size of
a gene set is small/modest, the power of GSEA does not
increase much when the number of null genes not in the
gene set increases or when the sample size increases. As
TEGS considers a self-contained null hypothesis, i.e., test-
ing whether a gene set is differentially expressed, it is not
affected by the behavior of the genes not in the gene set.
TEGS improves power when sample size increases or the
magnitudes of signal genes in a gene set increase. How-
ever, TEGS does not directly compare a gene set with
other gene sets, although one can rank gene sets using p-
values calculated using TEGS.Our numerical results show
that TEGS outperforms GSEA in terms of size and power,
although the powers are not directly comparable as they
test for different null hypotheses.
Due to the nature of the null hypothesis we specified, it

is possible that a significant gene set from our proposed
testing procedure is driven by one or two very significant
genes, which is less likely to occur in GSEA. There are sev-
eral possible ways to guard against this. For example, after
a gene set is identified to be significant, one can perform
single gene analyses to further characterize how the sig-
nals are distributed within the gene set. Or, one can use
the same multivariate model as (1) to estimate and test
the association of each gene with the phenotype using the
ridge regression.
TEGS is not limited to testing mRNA expression in

biological pathways/networks. It can also be applied for
testing the effects of other genomic markers, such as DNA
copy numbers, RNA or protein expressions, and DNA
methylations in a genomic region or a functional set.

Conclusions
Wehave proposed in this paper a newmethod for the gene
set analysis, TEGS. By introducing a working covariance,
TEGS directly models the interdependence of the expres-
sion values in a gene set, the most important feature of
biological pathways or gene sets that is often overlooked
in existing methods. TEGS incorporates information from
multiple genes in a gene set through the working covari-
ance and thus outperforms two widely used approach,
GSEA and global test in simulation studies and a diabetes
microarray data.
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