343 research outputs found

    The Influence of Court Surfaces on Lower Limb Muscle Activation of Tennis Run-and-Stroke

    Get PDF
    This study aimed to examine the characteristics of lower extremity muscle activity between different tennis court surfaces. Six male right-handed elite tennis players were recruited, and their electromyography activity (EMG) during open stance running forehand were collected. Average activity level of rectus femoris (RF), biceps femoris (BF), gastrocnemius (GAS), tibialis anterior (TA) from the lead leg, which normalized by maximal voluntary isometric contractions (MVC) was recorded under different situation (hard court, grass court, clay court). Our study demonstrates that GAS was significantly different and the activation level was greater on a hard court than on clay (p = .005). Tennis players should enhance their gastrocnemius muscle performance when matching from clay to hard court to avoid a higher level of gastrocnemius activation when adapting to a different court, which could lead to an injury. KEYWORDS: Grand Slam, training, EMG, performanc

    KINEMATICS ANALYSIS OF THE UPPER EXTREMITY DURING THE TWOHANDED BACKHAND DRIVE VOLLEY FOR FEMALE TENNIS PLAYERS

    Get PDF
    The purpose of this study was to discuss the motion characteristics of the arms in the two-handed backhand drive volley. Five elite female tennis players participated in this study, their two-handed backhand drive volley strokes were analysed, and all participants are right handed. Motion Analysis System with 10 Eagle Digital inferred high speed cameras at 200Hz were used for this study. The results show a similar elbow and wrist speed strategy in x-axis between two-handed ground stroke and drive volley, our study also found that the rear arm dominates the stroke and mainly provide the topspin that is required for the skill of the drive volley. In order to create better stroke efficiency, the right elbow reached peak velocity first, followed by the right wrist before racket impact with the ball

    By protecting against cutaneous inflammation, epidermal pigmentation provided an additional advantage for ancestral humans.

    Get PDF
    Pigmentation evolved in ancestral humans to protect against toxic, ultraviolet B irradiation, but the question remains: "what is being protected?" Because humans with dark pigmentation display a suite of superior epidermal functions in comparison with their more lightly pigmented counterparts, we hypothesized and provided evidence that dark pigmentation evolved in Africa to support cutaneous function. Because our prior clinical studies also showed that a restoration of a competent barrier dampens cutaneous inflammation, we hypothesized that resistance to inflammation could have provided pigmented hominins with yet another, important evolutionary benefit. We addressed this issue here in two closely related strains of hairless mice, endowed with either moderate (Skh2/J) or absent (Skh1) pigmentation. In these models, we showed that (a) pigmented mice display a markedly reduced propensity to develop inflammation after challenges with either a topical irritant or allergen in comparison with their nonpigmented counterparts; (b) visible and histologic evidence of inflammation was paralleled by reduced levels of pro-inflammatory cytokines (i.e., IL-1α and INFα); (c) because depigmentation of Skh2/J mouse skin enhanced both visible inflammation and pro-inflammatory cytokine levels after comparable pro-inflammatory challenges, the reduced propensity to develop inflammation was directly linked to the presence of pigmentation; and (d) furthermore, in accordance with our prior work showing that pigment production endows benefits by reducing the surface pH of skin, acidification of albino (Skh1) mouse skin also protected against inflammation, and equalized cytokine levels to those found in pigmented skin. In summary, pigmentation yields a reduced propensity to develop inflammation, consistent with our hypothesis that dark pigmentation evolved in ancestral humans to provide a suite of barrier-linked benefits that now include resistance to inflammation

    A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires

    Get PDF
    In this paper, a silicon-oxide-nitride-silicon nonvolatile memory constructed on an n+-poly-Si nanowire [NW] structure featuring a junctionless [JL] configuration is presented. The JL structure is fulfilled by employing only one in situ heavily phosphorous-doped poly-Si layer to simultaneously serve as source/drain regions and NW channels, thus greatly simplifying the manufacturing process and alleviating the requirement of precise control of the doping profile. Owing to the higher carrier concentration in the channel, the developed JL NW device exhibits significantly enhanced programming speed and larger memory window than its counterpart with conventional undoped-NW-channel. Moreover, it also displays acceptable erase and data retention properties. Hence, the desirable memory characteristics along with the much simplified fabrication process make the JL NW memory structure a promising candidate for future system-on-panel and three-dimensional ultrahigh density memory applications

    Neural Free-Viewpoint Relighting for Glossy Indirect Illumination

    Full text link
    Precomputed Radiance Transfer (PRT) remains an attractive solution for real-time rendering of complex light transport effects such as glossy global illumination. After precomputation, we can relight the scene with new environment maps while changing viewpoint in real-time. However, practical PRT methods are usually limited to low-frequency spherical harmonic lighting. All-frequency techniques using wavelets are promising but have so far had little practical impact. The curse of dimensionality and much higher data requirements have typically limited them to relighting with fixed view or only direct lighting with triple product integrals. In this paper, we demonstrate a hybrid neural-wavelet PRT solution to high-frequency indirect illumination, including glossy reflection, for relighting with changing view. Specifically, we seek to represent the light transport function in the Haar wavelet basis. For global illumination, we learn the wavelet transport using a small multi-layer perceptron (MLP) applied to a feature field as a function of spatial location and wavelet index, with reflected direction and material parameters being other MLP inputs. We optimize/learn the feature field (compactly represented by a tensor decomposition) and MLP parameters from multiple images of the scene under different lighting and viewing conditions. We demonstrate real-time (512 x 512 at 24 FPS, 800 x 600 at 13 FPS) precomputed rendering of challenging scenes involving view-dependent reflections and even caustics.Comment: 13 pages, 9 figures, to appear in cgf proceedings of egsr 202

    Effect of Antrodia

    Get PDF
    Antrodia camphorata is a rare Taiwanese medicinal mushroom. Antrodia camphorata extract has been reported to exhibit antioxidant, anti-inflammation, antimetastasis, and anticancer activities and plays a role in liver fibrosis, vasorelaxation, and immunomodulation. Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Platelet activation plays a crucial role in intravascular thrombosis, which is involved in a wide variety of cardiovascular diseases. However, the effect of Antrodia camphorata on platelet activation remains unclear. We examined the effects of Antrodia camphorata on platelet activation. In the present study, Antrodia camphorata treatment (56–224 μg/mL) inhibited platelet aggregation induced by collagen, but not U46619, an analogue of thromboxane A2, thrombin, and arachidonic acid. Antrodia camphorata inhibited collagen-induced calcium (Ca2+) mobilization and phosphorylation of protein kinase C (PKC) and Akt. In addition, Antrodia camphorata significantly reduced the aggregation and phosphorylation of PKC in phorbol-12, 13-dibutyrate (PDBu) activated platelets. In conclusion, Antrodia camphorata may inhibit platelet activation by inhibiting of Ca2+ and PKC cascade and the Akt pathway. Our study suggests that Antrodia camphorata may be a potential therapeutic agent for preventing or treating thromboembolic disorders

    Integration, Launch, and First Results from IDEASSat/INSPIRESat-2 - A 3U CubeSat for Ionospheric Physics and Multi-National Capacity Building

    Get PDF
    The Ionospheric Dynamics and Attitude Subsystem Satellite (IDEASSat) is a 3U CubeSat carrying a Compact Ionospheric Probe (CIP) to detect ionospheric irregularities that can impact the usability and accuracy of global satellite navigation systems (GNSS), as well as satellite and terrestrial over the horizon communications. The spacecraft was developed by National Central University (NCU) in Taiwan, with additional development and operational support from partners in the International Satellite Program in Science and Education (INSPIRE) consortium. The spacecraft system needed to accommodate these mission objectives required three axis attitude control, dual band communications capable of supporting both tracking, telemetry and command (TT&C) and science data downlink, as well as flight software and ground systems capable of supporting the autonomous operation and short contact times inherent to a low Earth orbit mission developed on a limited university budget with funding agency-imposed constraints. As the first spacecraft developed at NCU, lessons learned during the development, integration, and operation of IDEASSat have proven to be crucial to the objective of developing a sustainable small satellite program. IDEASSat was launched successfully on January 24, 2021 aboard the SpaceX Falcon 9 Transporter 1 flight. and successfully began operations, demonstrating power, thermal, and structural margins, as well as validation of uplink and downlink communications functionality, and autonomous operation. A serious anomaly occurred after 22 days on orbit when communication with the spacecraft were abruptly lost. Communication was re-established after 1.5 months for sufficient time to downlink stored flight data, which allowed the cause of the blackout to be identified to a high level of confidence and precision. In this paper, we will report on experiences and anomalies encountered during the final flight model integration and delivery, commissioning, and operations. The agile support from the international amateur radio community and INSPIRE partners were extremely helpful in this process, especially during the initial commissioning phase following launch. It is hoped that the lessons learned reported here will be helpful for other university teams working to develop spaceflight capacity

    Dual Targeting of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Histone Deacetylase as a Therapy for Colorectal Cancer

    Get PDF
    AbstractStatins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR) inhibitors decreasing serum cholesterol and have shown promise in cancer prevention. In this study, we demonstrated the oncogenic role of HMGR in colorectal cancer (CRC) by disclosing increased HMGR activity in CRC patients and its enhancement of anti-apoptosis and stemness. Our previous studies showed that statins containing carboxylic acid chains possessed activity against histone deacetylases (HDACs), and strengthened their anti-HDAC activity through designing HMGR-HDAC dual inhibitors, JMF compounds. These compounds exerted anti-cancer effect in CRC cells as well as in AOM-DSS and ApcMin/+ CRC mouse models. JMF mostly regulated the genes related to apoptosis and inflammation through genome-wide ChIP-on-chip analysis, and Ingenuity Pathways Analysis (IPA) predicted their respective regulation by NR3C1 and NF-κB. Furthermore, JMF inhibited metastasis, angiogenesis and cancer stemness, and potentiated the effect of oxaliplatin in CRC mouse models. Dual HMGR-HDAC inhibitor could be a potential treatment for CRC
    corecore