284 research outputs found

    Bridge scour evaluation based on ambient vibration

    Get PDF
    The vulnerability of bridges to hazards such as earthquakes, wind and floods necessitates special structural characteristics. To guarantee the stability of bridge structures, the precise evaluation of the scour depth of bridge foundation has recently become an important issue, as most of the unexpected damage to or collapse of bridges has been attributed to hydraulic issues. In this paper, a vibration-based bridge health monitoring system that utilizes only the response of superstructure to rapidly evaluate the embedded depth of a bridge column is proposed. To clarify the complex fluid-solid coupling phenomenon, the effects of embedded depth and water level were first verified through a series of static experiments. A confined finite element model simulated by soil spring effects was then established to illustrate the relationship between the fundamental frequency and the embedded depth. Using the proposed algorithm, the health of the bridge is able to be inferred by processing the ambient vibration response of the superstructure. To implement the proposed algorithm, a SHM prototype system monitoring environmental factors such as temperature, water level, and inclination was developed to support on-line processing. The performance of the proposed system was verified by a series of dynamic bridge scour experiments conducted in a laboratory flume and compared with readings from a water-proof camera. The results showed that using the proposed vibration-based bridge health monitoring system, the embedded depth of bridge column during complex scour processes is able to be reliably calculated

    Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    Full text link
    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2?3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98439/1/cell%2E2012%2E0001.pd

    Percutaneous transhepatic techniques for retrieving fractured and intrahepatically dislodged percutaneous transhepatic biliary drainage catheters

    Get PDF
    Dislodged intrabiliary drainage devices, including catheters, endoprostheses, and stents, may further impair drainage and cause various local reactions, vascular and gastrointestinal tract complications. Endoscopic approaches for management of plastic biliary endoprostheses have been extensively discussed. However, in rare cases of fracture of percutaneous transhepatic biliary drainage (PTBD) catheters, only a percutaneous transhepatic technique for retrieving should be applied to avoid further damage by its rigid fragment. We present the adjusted techniques using either a goose neck snare, over-the-wire balloon catheter, or biopsy forceps with image demonstration and reviews. We encountered two patients with PTBD tube fracture and intrahepatic dislodgment. In both patients, percutaneous approaches were used for successfully retrieving and removing the fractured catheter through transhepatic tract: one with the use of a biopsy forceps, another with an inflatable balloon catheter

    Development of a P300 Brain–Machine Interface and Design of an Elastic Mechanism for a Rehabilitation Robot

    Get PDF
    This paper focuses on the development of a P300 speller and the design of a rehabilitation robot using a brain-machine interface. The combined feature set provides a norm that can be used to assess trends of the user’s increased or decreased independence. The combined feature set is found to maintain a 90% sorting rate; it can also reduce the relationship of individual independence for each subject. Among the results, the highest P300 classification accuracy can be increased by 36.04%. A novel adaptive coupled elastic actuator (ACEA) is proposed that uses adjustable characteristics to adapt to the applied output and input forces, thus ensuring safe human-machine interaction without the use of complex control strategies. The proposed robotic system uses variable impedance to achieve adaptability and safety in dynamic unstructured environments. This paper discusses the design, model, control, and performance of the ACEA. </p

    Missing Teeth and Restoration Detection Using Dental Panoramic Radiography Based on Transfer Learning With CNNs

    Get PDF
    Common dental diseases include caries, periodontitis, missing teeth and restorations. Dentists still use manual methods to judge and label lesions which is very time-consuming and highly repetitive. This research proposal uses artificial intelligence combined with image judgment technology for an improved efficiency on the process. In terms of cropping technology in images, the proposed study uses histogram equalization combined with flat-field correction for pixel value assignment. The details of the bone structure improves the resolution of the high-noise coverage. Thus, using the polynomial function connects all the interstitial strands by the strips to form a smooth curve. The curve solves the problem where the original cropping technology could not recognize a single tooth in some images. The accuracy has been improved by around 4% through the proposed cropping technique. For the convolutional neural network (CNN) technology, the lesion area analysis model is trained to judge the restoration and missing teeth of the clinical panorama (PANO) to achieve the purpose of developing an automatic diagnosis as a precision medical technology. In the current 3 commonly used neural networks namely AlexNet, GoogLeNet, and SqueezeNet, the experimental results show that the accuracy of the proposed GoogLeNet model for restoration and SqueezeNet model for missing teeth reached 97.10% and 99.90%, respectively. This research has passed the Research Institution Review Board (IRB) with application number 202002030B0

    Tooth Position Determination by Automatic Cutting and Marking of Dental Panoramic X-ray Film in Medical Image Processing

    Get PDF
    This paper presents a novel method for automatic segmentation of dental X-ray images into single tooth sections and for placing every segmented tooth onto a precise corresponding position table. Moreover, the proposed method automatically determines the tooth’s position in a panoramic X-ray film. The image-processing step incorporates a variety of image-enhancement techniques, including sharpening, histogram equalization, and flat-field correction. Moreover, image processing was implemented iteratively to achieve higher pixel value contrast between the teeth and cavity. The next image-enhancement step is aimed at detecting the teeth cavity and involves determining the segment and points separating the upper and lower jaw, using the difference in pixel values to cut the image into several equal sections and then connecting each cavity feature point to extend a curve that completes the description of the separated jaw. The curve is shifted up and down to look for the gap between the teeth, to identify and address missing teeth and overlapping. Under FDI World Dental Federation notation, the left and right sides receive eight-code sequences to mark each tooth, which provides improved convenience in clinical use. According to the literature, X-ray film cannot be marked correctly when a tooth is missing. This paper utilizes artificial center positioning and sets the teeth gap feature points to have the same count. Then, the gap feature points are connected as a curve with the curve of the jaw to illustrate the dental segmentation. In addition, we incorporate different image-processing methods to sequentially strengthen the X-ray film. The proposed procedure had an 89.95% accuracy rate for tooth positioning. As for the tooth cutting, where the edge of the cutting box is used to determine the position of each tooth number, the accuracy of the tooth positioning method in this proposed study is 92.78%

    Integration, Launch, and First Results from IDEASSat/INSPIRESat-2 - A 3U CubeSat for Ionospheric Physics and Multi-National Capacity Building

    Get PDF
    The Ionospheric Dynamics and Attitude Subsystem Satellite (IDEASSat) is a 3U CubeSat carrying a Compact Ionospheric Probe (CIP) to detect ionospheric irregularities that can impact the usability and accuracy of global satellite navigation systems (GNSS), as well as satellite and terrestrial over the horizon communications. The spacecraft was developed by National Central University (NCU) in Taiwan, with additional development and operational support from partners in the International Satellite Program in Science and Education (INSPIRE) consortium. The spacecraft system needed to accommodate these mission objectives required three axis attitude control, dual band communications capable of supporting both tracking, telemetry and command (TT&C) and science data downlink, as well as flight software and ground systems capable of supporting the autonomous operation and short contact times inherent to a low Earth orbit mission developed on a limited university budget with funding agency-imposed constraints. As the first spacecraft developed at NCU, lessons learned during the development, integration, and operation of IDEASSat have proven to be crucial to the objective of developing a sustainable small satellite program. IDEASSat was launched successfully on January 24, 2021 aboard the SpaceX Falcon 9 Transporter 1 flight. and successfully began operations, demonstrating power, thermal, and structural margins, as well as validation of uplink and downlink communications functionality, and autonomous operation. A serious anomaly occurred after 22 days on orbit when communication with the spacecraft were abruptly lost. Communication was re-established after 1.5 months for sufficient time to downlink stored flight data, which allowed the cause of the blackout to be identified to a high level of confidence and precision. In this paper, we will report on experiences and anomalies encountered during the final flight model integration and delivery, commissioning, and operations. The agile support from the international amateur radio community and INSPIRE partners were extremely helpful in this process, especially during the initial commissioning phase following launch. It is hoped that the lessons learned reported here will be helpful for other university teams working to develop spaceflight capacity

    Follicular Oocytes Better Support Development in Rabbit Cloning Than Oviductal Oocytes

    Full text link
    This study was conducted to determine the effect of rabbit oocytes collected from ovaries or oviducts on the developmental potential of nuclear transplant embryos. Donor nuclei were obtained from adult skin fibroblasts, cumulus cells, and embryonic blastomeres. Rabbit oocytes were flushed from the oviducts (oviductal oocytes) or aspirated from the ovaries (follicular oocytes) of superovulated does at 10, 11, or 12-h post-hCG injection. The majority of collected oocytes were still attached to the sites of ovulation on the ovaries. We found that follicular oocytes had a significantly higher rate of fusion with nuclear donor cells than oviductal oocytes. There was no difference in the cleavage rate between follicular and oviductal groups, but morula and blastocyst development was significantly higher in the follicular group than in the oviductal group. Two live clones were produced in follicular group using blastomere and cumulus nuclear donors, whereas one live clone was produced in the oviductal group using a cumulus nuclear donor. These results demonstrate that cloned rabbit embryos derived from follicular oocytes have better developmental competence than those derived from oviductal oocytes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90481/1/cell-2E2011-2E0030.pd
    • …
    corecore