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Abstract. The vulnerability of bridges to hazards such as earthquakes, wind and floods 

necessitates special structural characteristics. To guarantee the stability of bridge structures, the 

precise evaluation of the scour depth of bridge foundation has recently become an important 

issue, as most of the unexpected damage to or collapse of bridges has been attributed to 

hydraulic issues. In this paper, a vibration-based bridge health monitoring system that utilizes 

only the response of superstructure to rapidly evaluate the embedded depth of a bridge column 

is proposed. To clarify the complex fluid-solid coupling phenomenon, the effects of embedded 

depth and water level were first verified through a series of static experiments. A confined finite 

element model simulated by soil spring effects was then established to illustrate the relationship 

between the fundamental frequency and the embedded depth. Using the proposed algorithm, the 

health of the bridge is able to be inferred by processing the ambient vibration response of the 

superstructure. To implement the proposed algorithm, a SHM prototype system monitoring 

environmental factors such as temperature, water level, and inclination was developed to 

support on-line processing. The performance of the proposed system was verified by a series of 

dynamic bridge scour experiments conducted in a laboratory flume and compared with readings 

from a water-proof camera. The results showed that using the proposed vibration-based bridge 

health monitoring system, the embedded depth of bridge column during complex scour 

processes is able to be reliably calculated.  
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Introduction 

 

Structural Health Monitoring (SHM), an interdisciplinary concept originated from aerospace 

engineering, has been widely applied into different research fields. Due to natural disasters such 

as earthquake or flooding and the inevitable aging problem, structures are found to collapse 

without any warning. As the economy and society may be stricken seriously by this kind of 

catastrophe, SHM has become an important issue all around the world. Generally, the stretegy 

of SHM is divided inot four leverls [1]. Verification of damage existance or not should be 

achieved in level I, and the damage location should be presented in level II. The damage 

condition are then confirmed in level III while the residual life of the structure, whcih is the 

final goal of the SHM system, can be evaluated in level IV. Based on the real-time monitoring 

result, pre-warning signals can be sent out to aviod the possible loss on property and human life. 

Over the last decades, the concept of SHM is mostly implemented by extracting the dynamic 

characteristic of structures including mode shape, fundamental frequency, and damping to 

reflect the variation of structural stiffness [2, 3]. For example, the stiffness and damping ratio of 

a full-scale structure was identified by analyzing the ambient vibration signal with the 

Hilbert-Huang Transform (HHT) [4]. Methods based on Bayesian inference to detect the 

damage location of strucutres were also proposed [5] while some long-term SHM systems have 

been applied practically on strucutres [6]. 

For the special structural characteristic, bridges are prone to suffer from multiple hazards 
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such as earthquake, wind, or floods among all the structures. Recently, as most of the 

unexpected damage or collapse of bridges are caused by scour phenomenon, bridge scour 

monitoring has been widely concerned. As a result, development of accurate and reliable bridge 

scour monitoring system has become an increasingly crucial challenge nowadays. Different 

than traditional SHM cases, bridge scour is a dynamic phenomenon affected by many factors 

such as water depth, flow speed, substructure geometry, and material property of the sediment 

[7].
 
As the loss of structural stiffness is mainly reflected on the change of embedded depth and 

the scour flow where the integrity of the superstructure only degrades slightly during the scour 

process, the fundamental frequency of the bridge is highly correlated with the embedded depth. 

As a result, a vibration-based bridge health monitoring system is proposed to rapidly and 

reliably predict the embedded depth. The stability condition of the bridge structure can then be 

rapidly evaluated based on the embedded depth estimated. 

 

The vibration-based system  

 

The main objective of the vibration-based system is to convert the measured fundamental 

frequency into its corresponding embedded depth. Since bridge scour is a complicated 

solid-fluid-coupled mechanism, the effects of embedded depth and water level on fundamental 

frequency were first clarified. A numerical model considering the distribution of the soil spring 

was then established to simulate different scour conditions for the proposed algorithm. 

Furthermore, Short-Time Fourier transform (STFT) was also utilized to extract the fundamental 

frequency from the vibration signal and the corresponding embedded depth could be calculated.  

 

The effect of embedded depth and water level 
 

In order to clarify the dominant factors involved in scouring, a preliminary static experiment 

was conducted to investigate the variation in fundamental frequency with different 

combinations of embedded depth and water level under static conditions. As shown in Fig. 1, a 

total of 16 testing groups, each increasing in embedded depth and water depth in 6 cm intervals, 

were tested. The embedded depth is defined as the depth where the caisson foundation is 

embedded in sand, and the water depth indicates the height difference between the water level 

and the sand surface. 

To precisely illustrate the fundamental behavior of the bridge pier, three high resolution 

velocity meters with a sampling rate of 200 Hz were deployed on the top of the bridge to 

measure its response in the flow, transverse, and vertical directions. The details of the 

experiment setup are shown in Fig. 2. The results of the static experiment indicate that the 

dominant frequency of the bridge is mainly affected by the embedded depth; a deeper 

embedded depth results in a higher structural frequency while a minor influence from the water 

level was observed, as shown in Fig. 3. To further verify this phenomenon, a finite element 

model was built by considering the confinement provided by soil. 
 

Simulation of soil confinement by soil spring 

 

To express the soil confinement of the bridge column, the equivalent soil spring was 

simulated based on the regulations of the Japanese Road Association (JRA) [8]. The soil spring 

constant of each direction can be expressed as:  

 
4/3

0
30

2.1

−









= H

HH

B
kk             (1) 



 

836. BRIDGE SCOUR EVALUATION BASED ON AMBIENT VIBRATION. 

TZU-KANG LIN, YEN-PO WANG, MING-CHIH HUANG, CHEN-AN TSAI 

 

 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2012. VOLUME 14, ISSUE 3. ISSN 1392-8716 
1115 

4/3

0
30

−









= V

VV

B
kk              (2) 

VSB
kk λ=               (3) 

 

where 
H

k  is the horizontal soil spring coefficient representing the resistance per unit area; 
V
k  

is the vertical soil spring coefficient; 
SB

k  represents the shear coefficient in the horizontal 

direction while 
0H

k  and 
0V

k  are the basis values to be modified under specific loading 

conditions. 
H

B  and 
V

B  are the equivalent loading widths in the horizontal and vertical 

directions, respectively, and λ , which ranges between 0.25-0.33, indicates the ratio between 

the shear coefficient in the horizontal direction and the vertical soil spring coefficient. 

 

          

          Fig. 1. Static experiment scheme                   Fig. 2. Static experiment setup 

 

 

Fig. 3. Contour of static experiment 

 

By utilizing the soil spring coefficient derived above, the total equivalent spring can be 

summarized by: 
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BSBHy
AklkbK ×+××= )5.0(2  for top layer 

BSBHy
AklkbK ×+×= )(2   for other layers       (4) 

BVZ
AkK ×=              (5) 

23 ]33.0[ lAklkK
BSBHx
××+×=θ           (6) 

 

where 
y

K , 
Z

K , 
x

Kθ  is the total stiffness contributed by the soil spring in the horizontal, 

vertical, and torsion directions, respectively; l  is the thickness of each layer; 
B

A  is the area 

of the foundation. 

 

 
Fig. 4. Equivalent soil spring diagram 

 

Finite element method model 

 

The finite element model was established with the use of the soil spring model. The size and 

material of the bridge column was also considered. An equivalent lateral spring was arranged 

every 10 cm to provide the horizontal confinement. The vertical and torsion spring were located 

at the bottom of the bridge column. By sequentially removing the horizontal spring from the top, 

the scouring phenomenon was modeled. As shown in Fig. 5, the fundamental frequency 

gradually increased with the increase in embedded depth, and a correlation was observed 

between the results of the static experiment and the FEM model. The trend between the 

structural frequency and the embedded depth can be approximated as a quadratic function of the 

embedded depth. 

 

The proposed SHM algorithm 
 

According to a study by Srdjan Stankovi’c [9], the real-time fundamental frequency can be 

obtained from the measured signal by utilizing the short time Fourier transform technique 

(STFT). Tri-phase contours illustrating the relationship between time, frequency, and amplitude 

can be drawn to reflect the frequency variation. 

Moreover, based on the results of the static experiment, a quadratic equation is proposed to 

describe the relationship between the embedded depth and the dominant frequency: 
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cDepthbDepthaFrequency +×+×= 2
         (7) 

 

where a , b  and c  are the coefficients to be determined. 

 

 
Fig. 5. FEM model vs static experiment 

 

To obtain the three parameters a , b  and c , at least 3 sets of embedded depth and 

structural dominant frequencies were used. Since only the first set can be obtained from 

ambient vibration measurements in practical applications, the second set was obtained from the 

finite element model with the dominant frequency that of the non-lateral soil springs, that is, the 

zero embedded depth frequency. Similarly, the third set was also obtained by the finite element 

model of the dominant frequency with a scouring depth of one half of the initial embedded 

depth. From the above three data sets, the quadratic relationship between dominant frequency 

and embedded depth can be obtained and the embedded depth can then be derived by solving 

the quadratic function. 

 

Experiment verification 

 

In order to verify the performance of the proposed algorithm, a series of scouring tests on a 

scaled-down single bridge column with a caisson foundation were conducted. The complex 

scour phenomenon and the corresponding structural response including the dynamic signal of 

the superstructure, environmental factors and the embedded depth were recorded through the 

course of the experiment in order to provide the database required by the proposed scour 

monitoring system. 

 

Experiment setup 

 

The dynamic scouring experiment was executed in an indoor water channel 37 m long, 1 m 

wide and 1.5 m high, as shown in Fig. 6. A 1/36 scaled down bridge model shown in Fig. 7 was 

designed to simulate the behavior of bridge columns during the scour process. In order to 

precisely record variations in the embedded depth, an acrylic specimen was deployed along 
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with a water-proof camera on the bottom of the channel, as shown in Fig. 8.  

 

   
      Fig. 6. Setup of the dynamic scour experiment            Fig. 7. The acrylic specimen 

 

The proposed algorithm was embedded into a prototype monitoring system developed based 

on LabVIEW software and a National Instruments hardware platform with data acquisition, 

storage and real-time processing functionality, shown in Fig. 9. 

 

       

 Fig. 8. The embedded depth monitored by camera     Fig. 9. The bridge health monitoring prototype 

 

Verification 

 

The initial embedded depth of the single bridge pier scouring test was 12 cm, and the 

maximum capacity was 40 cm. Similar to the static experiment, three sensors with a sampling 

rate of 200 Hz were placed on the top of the scaled down bridge model. In addition, a wireless 

inclinometer, thermometer and a water level gauge were deployed to measure the 

environmental factors with a sampling rate of 10 Hz, as shown in Fig. 10. 

In order to verify the stability of the prototype system, the time history of the monitored 

environmental factors was recorded, as shown in Fig. 11, where the X and Y axes of the 

inclinometer represent the response in the flow direction and traffic direction, respectively. The 

water flow detected by the level gauge arrived at the water channel at about 100 seconds while 

the inclinometer decreased 1 degree in both X and Y axes. Based on the thermometer 

measurements, the temperature dropped 1.5°. It was observed that during the scouring 

experiment, the bridge column specimen remained stable with a steady water level of 10 cm. 

Therefore, the main factor influencing the variation in structural frequency could be inferred to 

be the changing of the embedded depth due to the scour effect. 

As mentioned in Section 2.4, the initial embedded depth and the corresponding frequency 

were obtained from the experiment. The other two data sets required by the proposed algorithm, 

shown in Table 1, were derived from a finite element model that considered the effects of soil 

spring. The quadratic equation in this study was found to be: 



 

836. BRIDGE SCOUR EVALUATION BASED ON AMBIENT VIBRATION. 

TZU-KANG LIN, YEN-PO WANG, MING-CHIH HUANG, CHEN-AN TSAI 

 

 

 

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2012. VOLUME 14, ISSUE 3. ISSN 1392-8716 
1119 

2530.92074.00035.0. 2 +×+×= DepthDepthFrequency       (8) 

 

  
       Fig. 10. Scour test setup               Fig. 11. Time history of environmental factors 

 
Table 1. The embedded depth and dominant frequency 

Depend on Embedded depth (cm) Dominant frequency (Hz) 

Measured 12.0 12.2387 

FEM 6.0 10.6234 

FEM 0.0 9.2530 

 

The frequency spectrum of the current direction was extracted from the measured vibration 

by the STFT every 2048 points, as shown in Fig. 12. The dominant frequency of the bridge 

column is depicted in Fig. 13. 

 

  
            Fig. 12. STFT spectrum                Fig. 13. Time history of dominant frequency 
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Based on the results, an excitation was generated by the arrival of water flow at 100 seconds 

and the fundamental frequency was maintained at around 12 Hz. Due to the rapid loss of 

embedded depth caused by the scour phenomenon, the structural frequency descended 

drastically and later stabilized at 500 seconds. In conjunction with the scour process, the 

dominant frequency continued to drop with small fluctuations of 0.1 Hz until reaching a 

frequency of 10 Hz. The decrease in fundamental frequency reached 2.3 Hz compared to the 

initial value after 4500 seconds and a scour hole 40 cm in diameter was observed, as shown in 

Fig. 14. 

With the support of the frequency-time history, the embedded depth was able to estimate 

based on the proposed quadratic equation. The results are shown in Fig. 15 and compared to the 

time history of embedded depth recorded by the camera, which is depicted by the dashed line. 

The results clearly indicate that the predicted embedded depth offers a more conservative value 

than the actual embedded depth for the first half of the scouring process. The reason for this is 

discussed in the following section. As the inner camera only takes readings from the scour 

surface, the confinement of the soil at the beginning of bridge scour was not considered. The 

physical scouring conditions can be reflected by the proposed method, which estimates the 

embedded depth from the fundamental frequency. With the accompanying stabilization of the 

scouring process, the difference between the proposed algorithm and the inner camera gradually 

decreased to less than 1 cm after 2600 seconds, which can be treated as an acceptable 

measurement error. In short, a more sensitive and accurate embedded depth is able to be 

reflected by the proposed algorithm than using an inner camera and the structure stability is able 

to be evaluated accordingly.  

 

  
Fig. 14. Scour hole Fig. 15. Comparison of embedded depth between 

the proposed algorithm and inner camera 

 

Conclusions 

 

A vibration-based bridge health monitoring system focusing on the scouring issue in bridge 

columns was proposed. To analyze the complex fluid-solid coupling characteristics of bridge 

scouring, a preliminary static experiment was conducted. The results have clarified that the 

embedded depth of the bridge column is the primary governing factor of the fundamental 

frequency, as opposed to the water level. In order to clearly illustrate the scouring phenomenon, 

the confinement of the surrounding soil was simulated by a finite element model considering 

the soil spring. Moreover, a quadratic equation describing the relationship between the 
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embedded depth and the dominant frequency was also proposed by utilizing three data sets, the 

first of which was obtained from experimentation and the other two from simulations. By 

integrating the STFT output, the real-time embedded depth of the bridge column was able to be 

rapidly estimated. A series of dynamic scouring experiments were then executed with the help 

of the developed prototype system to demonstrate the performance of the proposed system. The 

results have proven the reliable prediction of embedded depth by the proposed algorithm by 

analyzing the response from the superstructure only. This system would be a great help in 

saving human life and property in the near future. 
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