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Abstract: This paper focuses on the development of a P300 speller and the design of a rehabilitation robot using a 

brain-machine interface. The combined feature set provides a norm that can be used to assess trends of the user’s 

increased or decreased independence. The combined feature set is found to maintain a 90% sorting rate; it can also 

reduce the relationship of individual independence for each subject. Among the results, the highest P300 classification 

accuracy can be increased by 36.04%. A novel adaptive coupled elastic actuator (ACEA) is proposed that uses adjustable 

characteristics to adapt to the applied output and input forces, thus ensuring safe human-machine interaction without 

the use of complex control strategies. The proposed robotic system uses variable impedance to achieve adaptability 

and safety in dynamic unstructured environments. This paper discusses the design, model, control, and performance 

of the ACEA.  

Keywords: Physical human–robot interaction; coupled elastic actuation; adaptive coupled elastic actuator; compliant 

actuators; human-machine systems 

 

Introduction 

Brain-computer interfaces (BCI) are a type of 

communication channel that does not require the use of 

peripheral nerves or muscles, thus transforming and 

directly channeling brain activity to commands for 

electronic devices [1], with obvious benefits for people 

with severe motor disabilities. Due to their high temporal 

resolution, electroencephalogram (EEG) signals are 

frequently used as inputs for BCI systems.  

The P300 potential is a response to an infrequent 

stimulus. It usually appears in EEG signals around 300 ms 

following an infrequent stimulus. Farwell and Donchin [2, 

3] proposed a P300 speller, in which the visually-evoked 

P300 potential is elicited by an oddball paradigm. When 

the user mentally focuses on a character in a spelling 

matrix, the P300 speller BCI system detects the targeted 

character and then displays the detection result on a 

screen, thereby enabling patients with lock-in syndrome 

to communicate. Previous work on P300 speller BCIs used 

various two-class classifiers to solve the character 

detection problem. Hoffmann et al. [4] used boosting with 

orthogonal least squares as the classifier. Lenhardt et al. 

[5] and Bostanov [6] used the linear discriminant analysis 

(LDA) method to maximize the separation between 

classes. Based on the LDA, a Bayesian LDA classifier was 

further proposed in [7] and has been used in a P300 

speller paradigm [8]. The support vector machine (SVM) 

approach has also shown satisfactory results in P300 BCI 

systems [9]. More recently, SVM ensembles were shown 

to provide better results than single SVMs in solving the 

problem of P300 detection [10]. The success of SVM in 

those P300 BCIs can be attributed to the fact that it maps 

observations from a general set into an inner product 

space. and its formulation seeks to minimize structural 

risk [11], thus providing a better degree of generalization 

than traditional learning machines, such as neural 

networks trained by an error back-propagation algorithm 
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[12].  

The field of physical human–robot interaction (pHRI) 

focuses on the development of information interaction 

and control systems by which humans can control robots. 

Such systems must make trade-offs between safety and 

performance [13].  

Installing additional sensors on the controllers of 

rigid robots has been shown to effectively improve safety 

[14]. However, a robot’s dynamic performance is limited 

by insufficient bandwidth. Furthermore, the natural 

dynamics of the system may be affected by extrinsic 

dynamic environmental factors.  

The most critical feature of modern actuator 

designs is the stiffness constant of the series elastic 

component, a physical quantity that dominates the 

bandwidth and payload capacity of the overall system and 

the safety level of the pHRI. A system design of this type 

should always determine a maximum allowable output 

impedance and a maximum tolerable mechanism 

restriction on the system to define the upper bound of the 

stiffness constant, with the lower bound defined by a 

minimum acceptable large force bandwidth [15]. Stiff 

systems exhibit more rapid responses to load changes and 

have greater capacity to handle heavy objects but, with 

respect to the pHRI, may result in a more acute impulse 

shock which could lead to serious injury of people nearby. 

In contrast, soft systems exhibit slower responses to load 

changes and are less able to handle heavy objects, but 

their motions are explicitly designed to protect humans 

during manipulation. In general, a compromise between 

safety and performance is difficult to achieve.  

The major objective of this study is to provide an 

inherently adjustable series elastic device for a pHRI. A 

novel adaptive coupled elastic actuator (ACEA) is 

developed, featuring characteristics which can adapt to 

changes in the applied output force and input force.  

Materials and Methods 

Data Acquisition and Preprocessing 

Our system uses six monochannels, each receiving 

EEG signals from a distinct electrode, and individually 

placed on Fz, Fcz, Cz, Pz, P7, and P8 in a 10-20 system. The 

potential measured from each of the first four (Fz, Fcz, Cz, 

Pz) is further subtracted from the average of P7 and P8 

potentials for each of four individual signals. At the 

preprocessing stage, 0.1–70 Hz band-pass filtering is 

performed. The acquired EEG signals are amplified with a 

gain of 24,000. The signals are then digitized and sent to a 

computer via the DAQ device (National Instrument Corp., 

USA). The received digitized EEG signals are called EEG 

data.  

EEG data collection is performed at a sampling rate 

of 250Hz, using software developed by the authors in C#. 

The software first presents a 6 × 6 spelling matrix (Figure 

Han-Pang Huang received his Ph.D. in electrical engineering from the 

University of Michigan, Ann Arbor, in 1986. He is a Distinguished Professor 

and Zhong Zhuo-Zhang Chair Professor in the Department of Mechanical 

Engineering and the Graduate Institute of Industrial Engineering, National 

Taiwan University. He is a Fellow of the CSME and the IEEE PAB, He serves as 

Editor of IEEE/ASME Trans. on Mechatronics, the Intl. J. of Advanced Robotics 

Systems, and the International Journal of Electronic Business Management. 

Dr. Huang’s research interests include intelligent robotic systems, prosthetic 

hands, manufacturing automation, and control systems. Dr. Huang was a 

recipient of the Ford University Research Award 1996-1998; National Science 

Council Outstanding Research Awards, 1996-1998, 1998-2000, 2000-2002; 

National Science Council Distinguished Research Awards, 2002-2008; National 

Science Council Distinguished Research Fellow Awards, 2009, TECO 

Outstanding Science and Technology Research Achievement Award, 2012, 

and Distinguished Education Award on RFID from EPCglobal (Taiwan), 2010. 

He served as Guest Editor of IEEE/ASME Trans. on Mechatronics in 2001 and 

2006, and of IEEE Trans. on Industrial Electronics in 2008 and 2009. He served 

as Editor-in-Chief of the Journal of Chinese Fuzzy System Association from 

September 1997 to September 1999, and of the International Journal of Fuzzy 

System from September 1999 to December 2002. He was Associate Editor of 

IEEE Trans. on Automation Science and Engineering from June 2003 to August 

2005, and Board Member of the International Journal of Advanced Robotics 

from 2004 to 2008, and the MIT Supply ChainForum 2005-2008. He also 

served as the President of the Chinese Institute of Automation Engineers, 

Program Director of the Automation Technology Division, National Science 

Council; and as Adviser to the Industry Bureau, Department of Technology. 

 

Yi-Hung Liu received his M.S. in engineering science and ocean engineering 

and his Ph.D. degree in mechanical engineering, both from National Taiwan 

University, Taiwan, in 1996 and 2003, respectively. In 2003, he joined the 

faculty of Chung Yuan Christian University, Taiwan, where he is currently 

Associate Professor of Mechanical Engineering. His research interests include 

machine learning, machine vision, brain–computer/robot interfaces, 

neuroprostheses, and intelligent system diagnosis. 

Dr. Liu is a member of the IEEE and CIAE. He currently serves as Associate 

Editor of the International Journal of Automation and Smart Technology 

(AUSMT), and Guest Editor of the Journal of Neuroscience and 

Neuroengineering (JNSNE) issued by American Science Publishers. He is the 

current Co-chair of the Technical Committee on Medical Mechatronics of 

IEEE’s SMC society. He has published 60 papers in journal and conference 

proceedings. He was the recipient of the 2006 Best Paper Award from the 

Chinese Institute of Industrial Engineers, the recipient of the Annual Best 

Paper Award from the 2009 Automatic Optical Inspection Forum and 

Competition, and the recipient of the Best Paper Award from the 2nd 

International Conference on Mechatronics and Applied Mechanics in 2012. He 

was named in Marquis’ Who’s Who in Asia 2007, and Who’s Who in the World 

2008, 2009, and 2010. 

 

Wei-Zhi Lin received his M.D. from Chung Yuan Christian University in 2010 

and is currently a Ph.D. candidate in the Department of Mechanical 

Engineering at National Taiwan University. His current research interests 

include robot hand control and design, machine learning, and pattern 

recognition. 

 

Zhi-Haug Kang received his M.D. from Chung Yuan Christian University in 

2010. He is currently a Ph.D. candidate in the Department of Mechanical 

Engineering at National Taiwan University. His current research interests 

include robot arm control and design, biomedical engineering, machine 

learning, and pattern recognition. 

 

Ching-An Cheng received his M.S. from the Department of Mechanical 

Engineering at National Taiwan University in 2013. His research interests 

include robot control theory, machine learning, and pattern recognition. 

 

Tzu-Hao Huang received his Ph.D. from the Department of Mechanical 

Engineering at National Taiwan University in 2013. His research interests 

include robot hand design and control, biomedical engineering, machine 

learning, and pattern recognition. 

http://www.ausmt.org/


Han-Pang Huang, Yi-Hung Liu, Wei-Zhi Lin, Zhi-Hao Kang, Ching-An Cheng, and Tzu-Hao Huang 

www.ausmt.org  93         auSMT Vol. 5 No. 2 (2015) 

Copyright © 2015 International Journal of Automation and Smart Technology 

1) with row or column intensification (stimulus).  

 

Figure 1. P300 speller. 

When a stimulus is presented, the corresponding 

stimulus code is embedded in the data stream in a time-

locked manner. Through the stimulus code, the first 500 

ms data (i.e., one epoch) from each channel can be 

automatically obtained. That is, when a particular row or 

column is intensified (flashed), we get the vector 

 

         1 1 21 , , , , 1 , ,
T

K Kx x N x N x x N   x    (1) 

 

where k and N respectively denote the number of 

channels and the number of samples, and x_i (j) denotes 

the jth sample from the ith channel. Here, N = 125 and K 

= 4. 

Data Collection 

Adapting the approach proposed in [16] out data 

collection procedure contains two stages: 1) preparation 

and 2) dataset collection.  

 

Figure 2. During data collection the computer is placed in front the blue 
cubicle wall . 

Preparation  

During the preparation stage, an electro-cap is 

attached to the subject’s head, using electrolyte gel to 

reduce impedance. The subject sits about 90 cm in front 

of a 17-inch LCD display (see Figure 2). 

Dataset Collection 

During the training stage, the subject is asked to 

focus on a sequence of single characters provided by the 

experimenter. First, one of the characters is illuminated on 

the LCD for 4s, during which it is visible to the subject. 

After the attention-catching intensification, a 2.5-s 

preparation period is given before the data collection 

procedure. As the subject focuses his/her attention on the 

target character, the system initiates a 10-round 

intensification process where presenting 12 randomly 

ordered visual stimuli in each round. The rows and 

columns of the matrix are intensified successively at 

random for 100ms; after a 75-ms inter-stimuli interval, the 

next stimulus is presented. Each round presents 10 

individual stimuli, with a pause of 0.5 s between rounds. 

Therefore, a 10-round intensification process will take 

27.75 s. 

In each round, the presentation of a particular 

stimulus produces a corresponding vector. Following Eq. 

(1) for the intensification of the ith row in the jth round 

produces a column vector 
N K

ijx R   . Following five 

rounds, we obtain the average vector associated with the 

ith row, where A is the number of rounds. Note that such 

averaged vectors (referred to as “patterns”) are used as 

the classifier input. Also, if this intensified row contains 

the target character, then 𝑥𝑖   contains a P300 potential 

and is used as a positive (target) training pattern; if not, it 

is used as a negative training pattern. The completed 

training produces a training set containing pn   positive 

(P300) patterns and nn  negative (non-P300) patterns. 

 

Figure 3. Band-pass filtered P300 potentials using inverse DFT. The x-axis 

is the time from the stimulus presentation. 

Figure 3 shows P300 potentials recorded from Pz. 
We found that the SVM achieves the best classification 
accuracy when the frequency band is set at 1–15 Hz. 
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Within this band, the signal to noise ratio (SNR) of the EEG 
signals is greatly increased due to the complete 
elimination of 60-Hz line noise and the significantly 
reduced impact of electromyography signals (10–400 Hz 
[17]). However, such reconstruction cannot remove 
electrooculography (EOG) signals since they lie in low 
frequencies below 10 Hz [18]. To avoid ocular artifacts, the 
subjects were asked to avoid eye movement during the 
experiments. 

Feature Extraction and Classification 

Feature extraction can be divided into two parts : 1) 

the EEG signal superposition of the average after feature 

extraction (there are three features of the area: N100 and 

P300 time and slope); 2) the EEG signal is depicted in a 

binary image and turned into a closed curve using the 

boundary extraction algorithm [19]. The edge of the 

binary image is recorded by Fourier descriptors. The edge 

information is then transformed into the form of 

frequency data and we can obtain the edge of the center 

(xcenter,ycenter). Each feature is described in Figure 4. 

(a) Area 

The area is defined as the sum of all EEG signals 

between 200 and 500 ms. 

(b) Time of N100 and P300 

N100 time is the local trough of the signal between 

50 and 170 ms and P300 time is the local peak of the signal 

between 220 and 500 ms. 

(c) Slope 

 

300 100

300 100

P volt N volt
m

P time N time





,          (2)

 
 

where P300volt is the P300 peak value 

N100volt is the N100 trough value 

P300time is the P300 time 

N100time is the N100 time. 

(d) Fourier Descriptor (FD) [20] and Center 

Assume that the edges of an image can make use of the 

Cartesian coordinate system to obtain the following 

coordinates on (x[m], y[m]), m=1,2,…,L (L is the total 

number of image edges). From these coordinates on (x[m], 

y[m]), Eqs. (3) and (4) can obtain the Fourier coefficient 

(a[n], b[n]) 

 

𝑎[𝑛] =
1

𝐿
∑ 𝑥[𝑚]𝑒−𝑗𝑛𝜔0𝑚𝐿
𝑚=1         (3) 

 

𝑏[𝑛] =
1

𝐿
∑ 𝑦[𝑚]𝑒−𝑗𝑛𝜔0𝑚𝐿
𝑚=1         (4) 

 

From Eq. (5) we obtain get the Fourier descriptor s[n] 
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.          (5) 

 

Equation (6) gives the center of the edge (xcenter, ycenter) 
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  .        (6) 

 

 

Figure 4. Description of the different features. 

 

SVM is used as a post-extraction classifier. In the 

SVM, the training set is given as 1{ , }n
i i ix y  , where 

d
i Rx

are the training patterns and  1, 1iy     are the class 

labels. Here, d = 500. Let w and b respectively be the 
weight vector and the bias of the separating hyperplane. 
The objective of the SVM is to find the optimal hyperplane 
by maximizing the margin of separation and minimizing 
the training errors, formulated as the optimization 
problem. 
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The dual problem of the SVM is as follows: 
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Finally, we can obtain the decision function 

 

* *( ) ( , )
N

i i
i

f x K x x b              (9) 

 

The kernel type is chosen as the Gaussian kernel 

 

     
2

2
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   (10) 

 

Two-fold cross-validation was run 10 times to evaluate the 

classification rate. The SVM determines the most probable 

row and column by the following two decision functions: 
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      (12) 

 

where nr and nc are respectively the row and column 

numbers in the character matrix (nr = nc = 6), and i are 

Lagrange multipliers. Once the indices are determined, 

the character is recognized. 

Rehabilitation System 

Design Concept of the ACEA 

Using a set of two different elastic components (one 

with soft stiffness and the other with hard stiffness) may 

alleviate the aforementioned drawbacks of traditional 

series elastic actuator (SEA) systems. A new approach 

ACEA is proposed, and the model is shown in Figure , 

where lM  , lX   , and lF   respectively denote the link 

mass, displacement of the output link and force on the 

link; mM  , mX   and mF   respectively denote the 

actuator mass, displacement of the actuator and input 

force of the actuator; sK   and hK   respectively denote 

the stiffness of the soft and hard elastic elements. 

 

Figure 5. Model of proposed adaptive coupled elastic actuator. 

 

 

 By assuming that the total compression distance 

( )s m lX X X    is always positive or equal to zero, and by 

defining the critical length ( , )sl t X  as the difference in 

displacement between the positions of the hard elastic 

element and the output link at time t  , the equivalent 

transmission stiffness of the ACEA approach can be shown 

as 

 

 ,  if  or l , 0
 

,  otherwise

s l th s
t

h s

K F F t X
K

K K

  
 


       (13) 

 
where ( ,0)th sF K l t    is the threshold force that equals 

sK   multiplied by the preset critical length ( ,0)l t  

associated with 0sX   , and l s sF K X    is the 

restored force provided by the deflection when the soft 

elastic element is stressed. The critical length l   that 

should be adaptive to the applied output force and input 
force determines the inherent stiffness of the actuation 
approach, meaning that the system is capable of dividing 
the total input force into direct driving and stiffness 
shifting forces, two forces that both contribute to the 
output force. Thus, the ACEA can divide the torque 
generation into separate low- and high-frequency parallel 
actuators by adjusting l  adaptively, as shown in Figure . 

 

Figure 6. Adaptive coupled elastic actuator concept, partitioning torque 
into low- and high-frequency components. 

By varying an adjustable l  accompanied by proper 
active control, the actuator may obtain any desired 
threshold force/torque adaptive to task-oriented 
strategies. Compared to previous compliant or stiff 
actuators, such as SEA, actuators using the proposed ACEA 
approach exhibit the desired intrinsic lower or higher 
output impedance. The relationship between an external 
load and deflection can be seen in Figure , and the 
approximate proposed operation states of an ACEA 
system can be seen in Table 1. 
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Figure 7. Properties of adaptive coupled elastic actuator; the relationship 

between load and deflection. 

Table 1. Different proposed operation states of an ACEA system. 

Operation 
speed 

Hard elastic 
element 

Soft elastic 
element 

High Performance Interaction 

Low 
Performance 

and Interaction 
Interaction 

Mechanism Design 

The critical issues of the ACEA system are how to 

design a mechanism and a control system to determine 

and adjust the stiffness of the soft and hard elastic 

components in advance. As shown in Fig. 8, utilizing only 

one actuator, the ACEA actuator, is designed to provide a 

favorable solution to adjust the critical length by a torque 

switch mechanism. 

In this design, a worm drives a worm gear through 

two sets of preloaded soft linear compression springs, 

initially restraining the movement of the worm shaft in its 

axial direction. One set of hard linear compression springs 

will restrain the movement of the worm shaft in its axial 

direction as the critical length falls to zero.  

 

Figure 8. One-DOF adaptive coupled elastic actuator. 

Specifically, the torque switch mechanism consists 

of a pair of traveling gears and corresponding pinions to 

drive a both-end-thread screw that can simultaneously 

convey two movable hard spring holders along the screw. 

This mechanism can channel and switch the input torque 

into either direct output torque or input torque to adjust 

the critical length, permitting the ACEA to vary according 

to the load torque and the input torque. The ACEA 

working principle is demonstrated in Figure , where adF  

is the critical length adjusting force, enF   is the 

environment force, acL  is the displacement between the 

no-load position and the actuation position in which the 

torque switch mechanism starts to work, m   is input 

actuating motor torque, and en   is environmental 

torque. 

In Fig. 9(a), increasing the load torque on the output 

shaft makes the driving worm move along the input shaft 

where a motor provides the input force. Meanwhile, the 

critical length is gradually shortened. The traveling gear 

then moves with the worm along the input shaft where it 

encounters the corresponding pinion that drives the 

screw if the increasing load torque exceeds the threshold 

torque (see Fig. 9(b)). The engagement of the traveling 

gear and the pinion causes two movable hard spring 

holders (the critical length adjusters) to move along the 

screw, and either shorten or extend the critical length 

based on the direction of the input torque (see Fig. 9(c)) 

until the engagement of these two gears is relieved and 

no more action will be taken to change 𝑙 and 𝑙(𝑡, 0)(see 

Fig. 9(d)). Therefore, the newly specified 𝑙′  and 

𝑙′(𝑡, 0)will be defined (see Fig. 9(e)). 

Through the torque switch mechanism, the system 

can mechanically alter the critical length/force in response 

to a light load within the first range of handling a relatively 

light load, within the first range of quick operation to make 

small output impedance responses, or in response to a 

heavy load within the second range of handling a 

relatively heavy load or the second range of slowly 

operating to make large output impedance responses. 

Experimental Results 

P300 Experiment Results 

First, we discuss the relationship between the 

numbers of Fourier descriptors and accuracy. As seen in 

Fig. 10, increasing the number of descriptors increases the 

accuracy level. However, no further improvements are 

made with more than four, but each additional descriptor 

increases computational complexity. Therefore, we took 

the first four Fourier descriptors (FD4) as a feature. 
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Figure 9. Torque switch operation process (view from bottom to top). 

 

Figure 10. Relationship between different Fourier descriptors and 
classification rate. 

In the experimental results, A, S, M, C and F 

respectively stand for area, slope, time of P300 and N100, 

center and Fourier descriptor. Raw represents the original 

data and the training time is presented in parenthesis. 
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Subj3 Subj4 
Figure 11. Different feature extraction combination of classification 
results. 
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In Fig. 11, first we consider the five individual 

features, A, S, M, C and F. M and F produce better results, 

while A produces the worst result. Increasing the number 

of feature combinations increases the accuracy results, 

and the combination ASMCF can produce a level of 

accuracy similar to that of the raw data, while the SMCF 

feature combination approximates the classification rate 

of the raw data. In addition, including feature F 

significantly improves accuracy results in Subj2. Different 

combinations of features produce different results and 

have different effects on different subjects. Therefore we 

chose the combination of features that produces best 

results for all four subjects to explore the relationship for 

EEG signal individual independence of users. 

Table 2 shows data trained using the SVM model for 

different subjects and their corresponding training data. 

As shown along the diagonal, accuracy results are not high. 

Table 2. Raw data of individual independence test: results of accuracy 
(%). 

Subj 1 2 3 4 

1 98.78 64.02 62.80 68.90 
2 62.32 95.12 71.95 82.32 
3 72.07 81.10 98.78 75.73 
4 75.12 65.37 67.80 96.34 

Therefore, we hope that feature extraction will 

improve the classification rate outside the diagonal. 

Better results from Fig. 11 (specifically SF, MF, AMF, ASM, 

SMF, SCF, SMCF, and ASMCF) were selected for the 

individual independence test. The results are shown in  

Table 3 to Table 10. A comparison formula is used to 

calculate the accuracy of the raw data after feature 

extraction. The change in accuracy is  determined by Eq. 

(14). 

 

Y X
Z

X


 .               (14) 

 

X and Y are respectively the original signal and the 

post-feature extraction classification of the individual 

independence test and Z is the calculated result. A 

negative value of Z indicates represents this particular 

feature combination does not reduce the independence 

between individuals, while positive values indicate the 

opposite. 

 

Table 3. SF features of the individual independence test results for 
accuracy (%). 

Subj 1 2 3 4 

1 95.12(–3.70) 80.80(26.21) 81.10(29.13) 90.24(30.97) 
2 75.12(20.55) 92.85(–2.38) 81.71(13.56) 90.07(9.42) 
3 68.41(–5.08) 82.31(1.50) 92.02(–6.84) 73.90(–2.42) 
4 71.46(–4.87) 62.32(–4.66) 67.80(0) 95.12(–1.27) 

Table 4. MF features of the individual independence test results for 

accuracy (%). 

Subj 1 2 3 4 

1 97.56(–1.23) 83.54(30.48) 81.71(30.10) 90.12(30.80) 
2 75.12(20.55) 92.24(–3.03) 83.54(16.10) 90.07(9.42) 
3 75.12(4.23) 81.10(0) 92.07(–6.79) 74.51(–1.64) 
4 75.12(0) 62.93(–3.73) 75.12(10.79) 95.12(–1.27) 

Table 5. AMF features of the individual independence test results for 

accuracy (%). 

Subj 1 2 3 4 

1 98.78(0) 82.32(28.57) 82.93(32.04) 90.85(31.86) 
2 73.29(17.61) 93.46(–1.74) 84.76(17.80) 91.29(10.90) 
3 72.07(0) 82.32(1.50) 94.51(–8.64) 73.90(–3.22) 
4 75.12(0) 62.93(–3.73) 66.59(–0.90) 95.73(–0.63) 

Table 6. ASM features of the individual independence test results for 
accuracy (%). 

Subj 1 2 3 4 

1 95.73(–3.09) 83.54(30.48) 83.54(33.01) 92.51(34.27) 
2 75.12(20.55) 94.51(–0.64) 85.37(18.64) 88.00(6.90) 
3 75.12(4.23) 82.32(1.50) 90.24(–8.64) 73.29(–3.22) 
4 76.34(1.62) 62.93(–3.73) 67.20(–0.9) 95.73(–0.63) 

Table 7. SMF features of the individual independence test results for 

accuracy (%). 

Subj 1 2 3 4 

1 98.78(0) 84.76(32.38) 82.32(31.07) 92.51(34.27) 
2 74.51(19.57) 93.46(–1.74) 82.32(14.41) 91.29(10.90) 
3 75.12(4.23) 83.54(3.01) 90.85(–8.02) 76.34(0.81) 
4 75.73(0.81) 63.54(–2.80) 69.02(1.80) 97.56(1.27) 

Table 8. SCF features of the individual independence test results for 
accuracy (%). 

Subj 1 2 3 4 

1 96.95(–1.85) 85.37(33.33) 80.49(28.16) 89.63(30.09) 
2 75.12(20.55) 91.46(–3.85) 82.93(15.25) 91.44(11.08) 
3 79.02(9.64) 82.32(1.50) 89.02(–9.88) 75.73(0) 
4 74.51(–0.81) 62.32(–4.66) 67.80(0) 95.12(–1.27) 

Table 9. SMCF features of the individual independence test results 
accuracy (%). 

Subj 1 2 3 4 

1 98.78(0) 84.76(32.38) 84.15(33.98) 93.73(36.04) 
2 75.73(21.53) 92.46(–2.79) 82.93(15.25) 90.02(9.36) 
3 75.12(4.23) 84.76(4.51) 91.46(–7.41) 75.73(0) 
4 75.64(0.69) 61.71(–5.6) 78.41(15.65) 98.78(2.53) 

Table 10. ASMCF features of the individual independence test results for 
accuracy (%). 

Subj 1 2 3 4 

1 100.00(1.23) 83.54(30.48) 78.66(25.24) 90.24(30.97) 

2 75.12(20.55) 92.68(–2.56) 82.93(15.25) 92.07(11.85) 

3 73.29(1.69) 84.15(3.76) 92.68(–6.71) 75.12(–0..81) 

4 74.51(–0.81) 62.32(–4.66) 69.02(1.80) 98.78(2.53) 

In Tables 3 to 10, the rows show the training data of 

different subjects while the columns show the test data of 

different subjects. The value in parentheses indicates 

whether the feature extraction rose or declined in terms 

of individual independence. If positive, the result can 

reduce the subjects’ individual independence. The 

experimental results show that some feature extractions 

can reduce individual independence. The SMCF for 

reducing the effect of individual independence (Table 8) 
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shows the greatest increase of 36.04%, thus improving 

accuracy from 68.9% to 93.73%. We get the feature 

combination of the SMCF which is done five times 

superposition; the accuracy all subjects can be maintained 

at about 90% while the individual independence declines. 

Human–Robot Interaction 

The dynamics of a robotic system can be drastically 

changed through interaction with a human operator since 

the motion of the human is too complicated to be 

modeled or predicted.  

We chose the control mode of the designed system 

to match different operating situations according to 

whether or not the robot was interacting with a human 

operator. In the beginning, the robot was set to track the 

given output link trajectory under the output link angle 

control without any interaction with a human subject or 

the environment. The human operator then tried to 

randomly guide the output link under the motor angle 

control or zero impedance control. 

 

(a) Human-robot interaction experiment with a human operator 

 

(b) Link angle and motor angle under different control modes 
Figure 12. Human–robot interaction experiment under three control 
modes. 

As shown in Fig. 12, the experimental results 

demonstrated that the robot can track the given output 

link trajectory quite using the output link angle control 

despite the effect of the link dynamics as the main 

resistive torque source. Because of the joint flexibility, the 

human operator can guide the robot’s movement. 

However, the operator could easily and randomly guide 

the robot under zero impedance control where the 

desired output torque was set at zero, despite some 

relatively small resistive torque observed in the 

experiment. 

Conclusions 

This paper focused on the development of a P300 

speller and design of a rehabilitation robot for brain–

machine interaction. The extracted feature sets were 

validated by individual independence. The results showed 

that the combination of the extracted feature sets and 

SMCF maintains a 90% classification rate and reduces the 

effective individual independence. By using the P300 

speller and reducing the effective individual 

independence with P300 event related potential (ERP), 

this technique can provide people with physical 

disabilities with increased convenience. The proposed 

adaptive coupled elastic actuator allows a rehabilitation 

robot system to use variable impedance to achieve 

adaptability and safety in dynamic unstructured 

environments.  

Future work will focus on the development and 

testing of an online brain-controlled rehabilitation robot, 

featuring reduced detection time and increased safety. 
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